09.09.2023

THE INSTITUTE NEEDS YOUR HELP

IHM NASU was damaged by the attack of rashist drones
01.10.2024

COMPUTER HYDROMECHANICS, 2024 (Program, Abstracts)

IX International Scientific & Practical Conference "Computer Hydromechanics"

HYDRODYNAMICS AND ACOUSTICS

2018 ◊ Volume 1 (91) ◊ Issue 1 p. 7-32

V. A. Voskoboinick*, A. A. Voskoboinick*, A. V. Voskoboinick*, F. Lucherini**, A. Redaelli**, L. N. Tereshchenko*, B. Fiore**

* Institute of Hydromechanics of NAS of Ukraine, Kyiv, Ukraine
** Polytechnic University of Milan, Italy

Jet flow and hydrodynamic noise of the open mechanical bileaflet heart valve

Gidrodin. akust. 2018, 1(1):07-32

https://doi.org/10.15407/jha2018.01.007

TEXT LANGUAGE: Russian

ABSTRACT

The paper presents the results of experimental study of a hydrodynamic noise generated by jet flow through a mechanical bileaflet prosthetic mitral valve produced by the Italian company Sorin Group. A physical modeling is carried out in vitro on the model of the left atrium chamber and left ventricle chamber. It is found that the highest intensities of the hydrodynamic noise and its spectral components are observed in the vicinity of the central jet of the bileaflet mitral valve. The small-scale vortex structures separating from its leaflets and generating pressure fluctuations in frequency range of (20...70) Hz are shown to degenerate starting from 2.5d distance downstream. With increasing water rate, the increase of spectral levels of pressure fluctuations in frequency range of (60...80) Hz is observed in the near wake of the mitral valve.

KEY WORDS

jet flow, hydrodynamic noise, mitral valve, pressure fluctuations, spectral power density

REFERENCES

 We apologize for indicating the incorrect Ref. [9] in printed version of the paper (see update below)

  1. P. Pibarot and J. G. Dumesnil, “Prosthetic heart valves: Selection of the optimal prosthesis and long-term management”, Circulation, vol. 119, no. 7, pp. 1034–1048, 2009. https://doi.org/10.1161/circulationaha.108.778886.
  2. C.-P. Li, S.-F. Chen, C.-W. Lo, and P.-C. Lu, “Turbulence characteristics downstream of a new trileaflet mechanical heart valve”, ASAIO Journal, vol. 57, no. 3, pp. 188–196, 2011. https://doi.org/10.1097/mat.0b013e318213f9c2.
  3. B. M. Yun, J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan, “A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase”, Annals of Biomedical Engineering, vol. 40, no. 6, pp. 1211–1225, 2012. https://doi.org/10.1007/s10439-011-0502-3.
  4. R. F. Siddiqui, J. R. Abraham, and J. Butany, “Bioprosthetic heart valves: Modes of failure”, Histopathology, vol. 55, no. 2, pp. 135–144, 2009. https://doi.org/10.1111/j.1365-2559.2008.03190.x.
  5. A. Kheradvar, E. M. Groves, C. J. Goergen, S. H. Alavi, R. Tranquillo, C. A. Simmons, and L. P. Dasi, “Emerging trends in heart valve engineering: Part II. Novel and standard technologies for aortic valve replacement”, Annals of Biomedical Engineering, vol. 43, no. 4, pp. 1–13, 2014. https://doi.org/10.1007/s10439-014-1191-5.
  6. S. H. Rahimtoola, “Choice of prosthetic heart valve in adults: An update”, Journal of the American College of Cardiology, vol. 55, no. 10, pp. 2413–2426, 2010. https://doi.org/10.1016/j.jacc.2009.10.085.
  7. C. M. Hobson, N. J. Amoroso, R. Amini, E. Ungchusri, Y. Hong, A. D’Amore, M. S. Sacks, and W. R. Wagner, “Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering”, Journal of Biomedical Materials Research Part A, vol. 103, no. 9, pp. 3101–3106, 2015. https://doi.org/10.1002/jbm.a.35450.
  8. A. Kheradvar, E. M. Groves, C. A. Simmons, B. Griffith, S. H. Alavi, R. Tranquillo, L. P. Dasi, A. Falahatpisheh, K. J. Grande-Allen, C. J. Goergen, M. R. K. Mofrad, F. Baaijens, S. Canic, and S. H. Little, “Emerging trends in heart valve engineering: Part III. Novel technologies for mitral valve repair and replacement”, Annals of Biomedical Engineering, vol. 43, no. 5, pp. 1–13, 2014. https://doi.org/10.1007/s10439-014-1129-y.
  9. K. K. Stout and E. D. Verrier, “Valvular heart disease: Changing concepts in disease management. Acute valvular regurgitation”, Circulation, vol. 119, no. 25, pp. 3232–3241, 2009. https://doi.org/10.1161/circulationaha.108.782292.
  10. T. A. Kaufmann, T. Linde, E. Cuenca-Navalon, C. Schmitz, M. Hormes, T. Schmitz-Rode, and U. Steinseifer, “Transient, three-dimensional flow field simulation through a mechanical, trileaflet heart valve prosthesis”, ASAIO Journal, vol. 57, no. 5, pp. 278–282, 2011. https://doi.org/10.1097/mat.0b013e318222849c.
  11. R. P. Gallegos, A. L. Rivard, P. T. Suwan, S. Black, S. Bertog, U. Steinseifer, A. Armien, M. Lahti, and R. W. Bianco, “In-vivo experience with the triflo trileaflet mechanical heart valve”, Journal of Heart Valve Disease, vol. 15, no. 8, pp. 791–799, 2006.
  12. M. Sato, H. Harasaki, K. E. Wika, M. V. Soloviev, and A. S. Lee, “Blood compatibility of a newly developed trileaflet mechanical heart valve”, ASAIO Journal, vol. 49, no. 2, pp. 117–122, 2003. https://doi.org/10.1097/00002480-200301000-00019.
  13. Y. S. Morsi, W. W. Yang, C. S. Wong, and S. Das, “Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling”, Journal of Artificial Organs, vol. 10, no. 2, pp. 96–103, 2007. https://doi.org/10.1007/s10047-006-0365-9.
  14. J. Schofer, A. Colombo, S. Klugmann, J. Fajadet, F. DeMarco, D. Tchertcher, F. Maisano, G. Bruschi, A. Latib, and K. Bijuklic, “Prospective multicenter evaluation of the direct flow medical transcatheter aortic valve”, Journal of the American College of Cardiology, vol. 63, no. 7, pp. 763–768, 2014. https://doi.org/10.1016/j.jacc.2013.10.013.
  15. A. B. Willson, J. Rodes-Cabau, D. A. Wood, J. Leipsic, A. Cheung, S. Toggweiler, R. K. Binder, M. Freeman, R. DeLarochelliere, and R. Moss, “Transcatheter aortic valve replacement with the St. Jude medical portico valve first in-human experience”, Journal of the American College of Cardiology, vol. 60, no. 5, pp. 581–586, 2012. https://doi.org/10.1016/j.jacc.2012.02.045.
  16. V. V. Popov, A. N. Gurtovenko, A. A. Tretyak, A. I. Khripachchenko, L. I. Tikhonenko, and E. V. Aksenov, “Pharmaco cold cardioplegia in isolated aortic valve replacement”, Visnyk Sercevo-Sudynnoi Hirurgii, vol. 39, pp. 161–167, 2015.
  17. Y. Alemu, G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, and D. Bluestein, “Design optimization of a mechanical heart valve for reducing valve thrombogenicity — A case study with ATS valve”, ASAIO Journal, vol. 56, no. 4, pp. 389–396, 2010. https://doi.org/10.1097/mat.0b013e3181e65bf9.
  18. L. P. Dasi, H. A. Simon, P. Sucosky, and A. P. Yoganathan, “Fluid mechanics of artificial heart valves”, Clinical and Experimental Pharmacology and Physiology, vol. 36, no. 2, pp. 225–237, 2009. https://doi.org/10.1111/j.1440-1681.2008.05099.x.
  19. W. Yin, E. C. Ngwe, and D. A. Rubenstein, “A biocompatible flow chamber to study the hemodynamic performance of prosthetic heart valves”, ASAIO Journal, vol. 58, no. 5, pp. 470–480, 2012. https://doi.org/10.1097/mat.0b013e31826140a2.
  20. J. Wu, B. M. Yun, A. M. Fallon, S. R. Hanson, C. K. Aidun, and A. Yoganathan, “Numerical investigation of the effects of channel geometry on platelet activation and blood damage”, Annals of Biomedical Engineering, vol. 39, no. 8, pp. 897–910, 2011. https://doi.org/10.1115/1.4029579.
  21. A. Falahapisheh and A. Kheradvar, “High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation”, European Journal of Mechanics - B/Fluids, vol. 35, no. 1, pp. 2–8, 2012. https://doi.org/10.1016/j.euromechflu.2012.01.019.
  22. M. Forleo and L. P. Dasi, “Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the b-datum regurgitant jet in a bileaflet mechanical heart valve”, Annals of Biomedical Engineering, vol. 42, no. 1, pp. 110–122, 2014. https://doi.org/10.1007/s10439-013-0896-1.
  23. B. H. Jun, N. Saikrishnan, and A. P. Yoganathan, “Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude medical Regent mechanical heart valve”, Annals of Biomedical Engineering, vol. 42, no. 5, pp. 526–540, 2014. https://doi.org/10.1007/s10439-013-0919-y.
  24. E. M. Groves, A. Falahatpisheh, J. L. Su, and A. Kheradvar, “The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root”, ASAIO Journal, vol. 60, no. 5, pp. 545–552, 2014. https://doi.org/10.1097/mat.0000000000000107.
  25. A. Kheradvar, E. M. Groves, A. Falahatpisheh, M. R. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith, “Emerging trends in heart valve engineering: Part IV. Computational modeling and experimental studies”, Annals of Biomedical Engineering, vol. 44, no. 5, pp. 1–19, 2015. https://doi.org/10.1007/s10439-015-1394-4.
  26. E. J. Weinberg and M. R. Kaazempur-Mofrad, “On the constitutive models for heart valve leaflet mechanics”, Cardiovascular Engineering, vol. 5, no. 1, pp. 37–43, 2005. https://doi.org/10.1007/s10558-005-3072-x.
  27. A. Kheradvar, J. Kasalko, D. Johnson, and M. Gharib, “An in vitro study of changing profile heights in mitral bioprostheses and their influence on flow”, ASAIO Journal, vol. 52, no. 1, pp. 34–38, 2006. https://doi.org/10.1097/01.mat.0000191203.09932.8c.
  28. S. Arjunon, P. H. Ardana, N. Saikrishnan, S. Madhani, B. Foster, A. Glezer, and A. P. Yoganathan, “Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices”, Journal of Biomechanical Engineering, vol. 137, no. 4, 045001(1–12), 2015. https://doi.org/10.1115/1.4029579.
  29. O. Baranny and P. Oshkai, “The influence of the aortic root geometry on flow characteristics of a prosthetic heart valve”, Journal of Biomechanical Engineering, vol. 137, no. 5, 051005(1–10), 2015. https://doi.org/10.1115/1.4029747.
  30. T. Linde, K. Hamilton, D. L. Timms, T. Schmitz-Rode, and U. Steinseifer, “A low-volume tester for the thrombogenic potential of mechanical heart valve prostheses”, Journal of Heart Valve Disease, vol. 20, no. 5, pp. 510–517, 2011.
  31. A. M. Leopaldi, R. Vismara, S. van Tuijl, A. Redaelli, F. N. van de Vosse, G. B. Fiore, and M. C. M. Rutten, “A novel passive left heart platform for device testing and research”, Medical Engineering and Physics, vol. 37, no. 3, pp. 361–366, 2015. https://doi.org/10.1016/j.medengphy.2015.01.013.
  32. R. Vismara, A. M. Leopaldi, M. Piola, C. Asselta, M. Lemma, C. Antona, A. Redaelli, F. van de Vosse, M. Rutten, and G. B. Fiore, “In vitro assessment of mitral valve function in cyclically pressurized porcine hearts”, Medical Engineering and Physics, vol. 38, no. 3, pp. 346–353, 2016. https://doi.org/10.1016/j.medengphy.2016.01.007.
  33. A. Falahatpisheh, G. Pedrizzetti, and A. Kheradvar, “Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields”, Experiments in Fluids, vol. 55, no. 1, pp. 1–15, 2014. https://doi.org/10.1007/s00348-014-1848-8.
  34. M. Grigioni, C. Daniele, G. D’Avenio, U. Morbiducci, C. D. Gaudio, M. Abbate, and D. D. Meo, “Innovative technologies for the assessment of cardiovascular medical devices: State-of-the-art techniques for artificial heart valve testing”, Expert Review of Medical Devices, vol. 1, no. 2, pp. 81–93, 2004. https://doi.org/10.1586/17434440.1.1.81.
  35. T. S. Vinogradova, Ed., Instrumental methods of cardiovascular system investigation: A handbook. Moscow: Medicina, 1986.
  36. M. C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Minero, A. Reali, Y. Bazilevs, and M. S. Sacks, “Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, vol. 55, no. 6, pp. 1211–1225, 2015. https://doi.org/10.1007/s00466-015-1166-x.
  37. I. V. Vovk, V. T. Grinchenko, and A. P. Makarenkov, “The respiratory and cardiac acoustics”, Acoustic bulletin, vol. 14, no. 1, pp. 3–19, 2011.
  38. P. D. Stein, A physical and physiological basis for the interpretation of cardiac auscultation. New York: Future Publishing, 1981.
  39. S. G. Kasoev, “On the hydrodynamic nature of cardiovascular system noise”, Trudy IOFAN, vol. 68, pp. 200–217, 2012.
  40. E. E. Litasova, A. M. Karaskov, E. N. Meshalkin, and A. E. Bakarev, “Hypothesis of hydroacoustic function of the heart and blood circulation”, Patologiya krovoobrashcheniya i kardiokhirurgiya, no. 1, pp. 64–69, 2010.
  41. J. V. Candy and H. E. Jones, “Processing of prosthetic heart valve sounds for single leg separation classification”, Journal of the Acoustical Society of America, vol. 97, no. 6, pp. 3663–3673, 1995. https://doi.org/10.1121/1.412414.
  42. J. V. Candy and H. E. Jones, “Classification of prosthetic heart valve sounds: A parametric approach”, Journal of the Acoustical Society of America, vol. 97, no. 6, pp. 3675–3687, 1995. https://doi.org/10.1121/1.412385.
  43. K. Holdak and D. Wolf, Atlas and guidance on phonocardiography and related mechanographic methods of investigation. Moscow: Medicina, 1964.
  44. M. Carrier, M. Pellerin, A. Basmadjian, D. Bouchard, L. P. Perrault, R. Cartier, P. Page, P. Demers, and Y. Herbert, “Fifteen years of clinical and echocardiographic follow up with the carbomedics heart valve”, Journal of Heart Valve Disease, vol. 15, no. 1, pp. 67–83, 2006.
  45. M. Charlebois-Menard, M. Sanjose, A. Marsan, A. Chauvin, Y. Pasco, S. Moreau, and M. Brouillette, “Experimental and numerical study of the noise generation in an outow buttery valve”, AIAA Paper, no. 3123, pp. 1–21, 2015. https://doi.org/10.2514/6.2015-3123.
  46. R. Vismara, A. Pavesi, E. Votta, M. Taramasso, F. Maisano, and G. B. Fiore, “A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement”, International Journal of Artificial Organs, vol. 34, no. 4, pp. 383–391, 2011. https://doi.org/10.5301/ijao.2011.7729.
  47. A. Voskoboinick, A. Redaelli, V. Voskoboinick, G. B. Fiore, I. Nesteruk, R. Vismara, and F. Lucherini, “Hydroacoustics of the prosthetic bileaflet mitral valve”, in Proceedings 3rd EUMLS Conference ‘Mathematics for Life Sciences’, Rivne, Ukraine, 2015, p. 49.
  48. J. S. Bendat and A. G. Piersol, Random data: Analysis and measurement procedures. New York: Wiley, 1971. https://doi.org/10.1002/9781118032428.
  49. V. Voskoboinick, N. Kornev, and J. Turnow, “Study of near wall coherent flow structures on dimpled surfaces using unsteady pressure measurements”, Flow, Turbulence and Combustion, vol. 90, no. 4, pp. 709–722, 2013. https://doi.org/10.1007/s10494-012-9433-9.
  50. G. P. Vinogradnyi, V. A. Voskoboinick, V. T. Grinchenko, and A. P. Makarenkov, “Spectral and correlation characteristics of the turbulent boundary layer on an extended flexible cylinder”, Journal of Fluid Dynamics, vol. 24, no. 5, pp. 695–700, 1989. https://doi.org/10.1007/bf01051721.
  51. V. A. Voskoboinick and A. P. Makarenkov, “Spectral characteristics of the hydrodynamical noise in a longitudinal flow around a flexible cylinder”, International Journal of Fluid Mechanics Research, vol. 31, no. 1, pp. 87–100, 2004. https://doi.org/10.1615/InterJFluidMechRes.v31.i1.70.