І.О.Луковський, Д.В.Овчинников, О.М.Тимоха
Повна третього порядку асимптотична нелінійна модальна система, що описує коливання рідини у вертикальному круговому циліндричному баці

Акустичний вiсник, Том 14 № 2, (2011) с.38-52
З використанням варіаційного модального методу Луковського й асимптотики Моісеєва побудовано нелінійну асимптотичну модальну систему, яка описує резонансні коливання рідини в вертикальному циліндричному баці кругового перерізу при його горизонтальних поступальних збуреннях з частотами, близькими до першої власної частоти коливань рідини. Вона зв'язує дві домінантні узагальнені координати, які відповідають двом першим власним формам (вони характеризуються однаковою власною частотою), а також нескінченний набір узагальнених координат другого та третього порядків. Ця модальна система є узагальненням існуючих нелінійних модальних систем, що базуються на асимптотиці Моісеєва, у тому числі класичної п'ятимодової модальної системи Луковського, оскільки попередні системи нехтували вкладом вищих власних форм другого та третього порядків. Для модельної задачі про усталені резонансні режими руху рідини зі скінченною глибиною продемонстровано вплив вищих власних форм на амплітудно-частотні характеристики й показано, що їх урахування якісно не змінює діапазони існування й точки біфуркації "плоского" та "кругового" хвильових режимів у порівнянні з результатами про усталені режими за п'ятимодовою системою Луковського. У той же час, у частотному діапазоні, де не існує стійких усталених режимів і очікуються хаотичні рухи рідини, можуть виникати вторинні (внутрішні) резонанси. Їхнє існування говорить про необхідність ревізії асимптотики Моісеєва.
КЛЮЧОВІ СЛОВА:
коливання рідини в баці, варіаційний метод Луковського, асимптотика Моісеєва, модальна система, нелінійність
МОВА ТЕКСТУ: українська