УДК 532.465

НЕПОЛНАЯ АВТОМОДЕЛЬНОСТЬ ВНУТРЕННИХ ВОЛН ВТОРОЙ МОДЫ В СЛОЕ РАЗДЕЛА

Е.В. ТЕРЛЕЦКАЯ*, В.С. МАДЕРИЧ*, И.А. БРОВЧЕНКО*, Т.Г. ТАЛИПОВА**

* Институт проблем математических машин и систем НАН Украины, Киев ** Институт прикладной физики РАН, Нижний Новгород kterletska@gmail.com

Получено 22.08 2013

По результатам численных экспериментов проведен анализ структуры внутренних волн второй моды для широкого диапазона амплитуд волн и стратификации. Показано, что наиболее важными характеристиками, влияющими на динамику волн, являются: локальное число Фруда Fr_m, вычисляемое как отношение максимальной локальной скорости к фазовой скорости волн; минимальное число Ричардсона Ri_{min}; эффективное число Рейнольдса Re_{eff}, определяемое как отношение произведения фазовой скорости волн и амплитуды волны а к кинематической вязкости. В зависимости от значений параметров Fr_m и Ri_{min} выделены три основных класса симметричных волн второй моды, распространяющихся в слое раздела толщиной h между двумя глубокими однородными слоями воды: (a) слабонелинейные волны при Fr_m < 1; (b) устойчивые сильно нелинейные волны прееносящие массу, при Ri_{min} > 0.15 и Fr_m ≈ 1.2; (в) неустойчивые сильно нелинейные волны при Ri_{min} ≤ 0.1 . Обнаружена неполная автомодельность динамики волн по числу Рейнольдса при больших Re_{eff}. Затухание волн со временем происходит таким образом, что число Ричардсона растет по автомодельной зависимости Ri_{min} $\sim (a/h)^{-1.25} \text{Re}_{eff}^{-1.25}$.

КЛЮЧЕВЫЕ СЛОВА: численное моделирование, внутренние волны второй моды, неполная автомодельность

За результатами чисельних експериментів проведено аналіз структури внутрішніх хвиль другої моди для широкого діапазону амплітуд хвиль і стратифікації. Показано, що найбільш важливими характеристиками, що впливають на динаміку хвиль, є: локальне число Фруда Fr_m, що обчислюється як відношення максимальної локальної пвидкості до фазової швидкості хвиль; мінімальне число Річардсона Rimin ; ефективне число Рейнольдса Re_{eff} , яке визначаться як відношення добутку фазової швидкості хвиль і амплітуди хвилі a до кінематичної в'язкості. Залежно від значень параметрів Fr_m і Rimin виділені три основні класи симетричних хвиль другої моди, що поширюються в шарі розділу товщиною h між двома глибокими однорідними шарами води: (a) слабонелінейні хвилі при $\operatorname{Fr}_m < 1$; (b) стійкі сильно нелінійні хвилі, які переносять масу, при $\operatorname{Rimin} > 0.15$ і $\operatorname{Fr}_m \approx 1.2$; (b) Рейнольдса при великих Re_{eff} . Загасання хвиль з часом відбувається таким чином, що число Річардсона зростає по автомодельній залежності $\operatorname{Rimin} \sim (a/h)^{-1.25}\operatorname{Re}_{eff}^{-1.25}$.

КЛЮЧОВІ СЛОВА: чисельне моделювання, внутрішні хвилі другої моди, неповна автомодельність

According to the results of numerical experiments the analysis of the internal structure of the second mode wave for a wide wave amplitude and stratification range. It is shown that the most important characteristics that govern the dynamics of waves are local Froude number Fr_m , calculated as the ratio of the maximum local rate to the phase velocity of the waves, minimum Richardson number Ri_{min} and the effective number Reynolds Re_{eff} , defined as the ratio the product of the phase velocity of the wave amplitude *a* to kinematic viscosity. Depending on the parameter values Fr_m and Ri_{min} three main classes of symmetric waves of the second mode propagating in the interface layer of thickness *h* between two homogeneous layers in deep water are identified: (a) the weakly nonlinear waves at $mboxFr_m < 1$, (b) stable strongly nonlinear waves that carry mass at $\operatorname{Ri}_{min} > 0.15$ and $\operatorname{Fr}_m \approx 1.2$, and (c) unstable strongly nonlinear waves at $mboxRi_{min} \leq 0.1$. It was revealed incomplete self-similarity of waves at high Reynolds number Re_{eff} . Wave damping occurs over time, so that the Richardson number is growing by self-similar dependence $\operatorname{Ri}_{min} \sim (a/h)^{-1.25} \operatorname{Re}_{eff}^{-1.25}$.

KEY WORDS: numerical modelling, internal waves of the second mode, incomplete similarity

введение

Внутренние волны (ВВ) представляют собой важный компонент динамики океана и стратифицированных озер. Достигая в океане амплитуд в сотни метров, эти волны играют существенную роль в переносе энергии [1–3], приводя к турбулентному перемешиванию [4] и переносу взвеси в придонном слое океана и озер. Волны большой амплитуды могут воздействовать на подводные аппараты и подводные инженерные сооружения, а также на распространение звука в океане [2].

Большая часть энергии BB сосредоточена в волнах первой бароклинной моды, которые распространяются как волны–понижения, когда толщина верхнего слоя много меньше глубины океана, и как волны–повышения – в противоположном случае. Результаты теоретических и экспериментальных исследований уединенных волн первой моды в океане обобщены в [1–5]. Волны большой амплитуды подвержены сдвиговой и конвективной неустойчивости [6], механизмы которой исследовались в [6– 11].

Волны второй бароклинной моды, представляющие собой, в зависимости от стратификации, симметричные возмущения любого знака полярности, изучены в меньшей степени. Однако наблюдения в океане [12 –16] и пограничном слое атмосферы (явление "Morning Glory") [17] продемонстрировали важность этого типа волн в переносе энергии в океане и атмосфере. Выделяются несколько основных механизмов генерации волн второй моды [13]: (а) взаимодействие волн первой моды с порогами; (б) взаимодействие волн первой моды с шельфом; (б) генерация внутренних волн второй моды интрузионными потоками в слое раздела; (в) отражение волн первой моды; (с) генерация волн потоком в главном термоклине при обтекании углубления дна.

Слабонелинейная теория уединенных внутренних волн второй моды на глубокой воде была развита в работах [18-20]. Решения уравнения Дюбрейль-Жакотен [21] позволяют описать уединенные волны большой амплитуды [19]. Особенность этого решения заключается в возможности существования замкнутых линий тока в движущейся системе координат и переносе массы такими волнами. Это явление обнаружено в лабораторных экспериментах [19] и в дальнейшем исследовано экспериментально [22-27], теоретически [28–30] и численно [26, 31-34]. Предельный случай распространения симметричного возмущения постоянной промежуточной плотности в двухслойной среде рассматривался в [28]. В движущейся системе координат жидкость в таком возмущении оставалась в покое. Результаты экспериментов и расчетов, однако, продемонстрировали ряд существенных особенностей динамики внутренних волн второй моды, требующих дальнейшего исследования:

1) слабонелинейная теория непригодна для описания сильно-нелинейных волн. Тогда как предсказываемая теорией [18-20] длина волны уменьшается с увеличением амплитуды, эксперименты показали, что для волн большой амплитуды длина волн растет с амплитудой;

2) даже небольшая асимметрия длинных волн второй моды, распространяющихся в слое раздела, приводит к возникновению коротких волн первой моды [27–34], в энергию которых переходит энергия волн второй моды [35];

3) построенные в рамках теории идеальной жидкости теоретические стационарные решения для волн большой амплитуды с замкнутыми линиями тока в движущейся системе координат оказались неустойчивы [28, 32]. В то же время, наблюдаемые в экспериментах волны большой амплитуды, переносящие массу, могут быть устойчивыми и медленно эволюционирующими образованиями.

4) внутренняя структура потоков внутри областей с замкнутыми линиями тока может быть различной: от их отсутствия в системе координат, движущейся с волной ("солидон" [28]), до формирования вихревой пары [32]. Лабораторные эксперименты и численные расчеты продемонстрировали сложную, меняющуюся со временем, многовихревую структуру этих потоков [22–26, 31–33].

Следует предположить, что на устойчивость волн большой амплитуды и особенности внутренней структуры этих волн оказывает существенное воздействие относительно малая вязкость. В настоящей работе численно исследуется динамика симметричных внутренних волн второй моды в относительно тонком слое раздела и структура областей захваченной жидкости в них в зависимости от амплитуды волн и толщины слоя раздела.

1. ПОСТАНОВКА ЗАДАЧИ И ОПИСАНИЕ ЧИСЛЕННОГО ЭКСПЕРИМЕНТА

Расчеты проводились в рамках уравнений Навье-Стокса в приближении Буссинеска для стратифицированной по солености воды:

$$\frac{\partial U_i}{\partial x_i} = 0, \quad (1)$$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho_0} \frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_i \partial x_j} - \frac{g_i \Delta \rho}{\rho_0}, \quad (2)$$

0.1.1

$$\frac{\partial S}{\partial t} + U_j \frac{\partial S}{\partial x_j} = \chi \frac{\partial^2 S}{\partial x_j^2}, \quad (3)$$

где $x_i = (x, y, z)$ – декартовы координаты, ось z направлена вертикально вверх; $U_i = (U, V, W)$ – составляющие поля скорости; P – давление; ρ – плотность воды; ρ_0 – невозмущенное значение плотности воды; S – соленость; $g_i = (0, 0, g)$ – ускорение свободного падения; ν – коэффициент кинематической вязкости; χ – коэффициент молекулярной диффузии. Система уравнений дополнялась уравнением состояния.

Система уравнений модели (1)-(3) дискретизировалась с использованием метода конечных разностей на смещенной сетке. Решение задачи разделялось на две этапа: (а) – решение двумерной системы уравнений для возвышений уровня и осредненных по глубине скоростей и (б) – решение трехмерной задачи для скорости и давления. Поле скорости и давления в трехмерной подзадаче расщеплялось на гидростатическую и негидростатическую составляющие. Алгоритм решения вклю-

Рис. 1. Схема численного эксперимента (*a*); расчетная область (*б*); Основные характеристики волн, используемые при анализе(*в*)

чал четыре стадии. На первой стадии явным методом с малым (внешним) шагом решалась двумерная система уравнений для возвышений уровня и осредненных по глубине скоростей. На второй стадии находилось решение для гидростатических составляющих скорости с относительно большим (внутренним) шагом по времени. На третьей стадии находились негидростатические поправки для поля скорости и давления. Наконец, на четвертой находилось решение для солености. Использовалась явная схема по горизонтали и неявная схема по вертикали. Детально этот алгоритм описан в [37,3].

Конфигурация вычислительного лотка лабораторных масштабов показана на рис. 1. Лоток длиной L и высотой 2H заполнен водой стратифицированной по солености с плотностью верхнего однородного слоя ρ_1 и нижнего – ρ_2 , разделенных тонким слоем раздела. Стратификация в лотке симметрична относительно середины глубины лотка и описывается функцией

$$\rho(z) = \rho_0 \left(1 - \frac{\Delta \rho}{2\rho_0} \text{th}\left(\frac{z}{h}\right) \right) , \qquad (4)$$

где h – толщина пикноклина в слое раздела; $\Delta \rho = \rho_2 - \rho_1$. Внутренние волны генерировались коллапсом перемешанной области с плотностью ρ_0 . Созданная таким образом волна распространяется в пикноклине слева направо и ее характеристики зависят от объема перемешанной области и от толщины пикноклина h. Для того чтобы проследить за переносом массы, начальный объем перемешанной жидкости с плотностью ρ_0 маркировался пассивной примесью. Основные характеристики волны, используемые при анализе, приведены на рис. 1, ϵ . Волна характеризуется амплитудой a, которая определяется как максимальное

отклонение изопикн и длиной волны λ , которая равна половине расстояния, на котором амплитуда волны уменьшается вдвое. Горизонтальный размер интрузии (области, которая переносит массу) l_0 определен как половина максимального горизонтального расстояния интрузии. Высота интрузии определялась как расстояние от оси симметрии до границы области, переносящей массу. Фазовая скорость волны U_c вычислялась как скорость вершины волны, тогда как U_m – максимальная скорость в вертикальном сечении волны.

Следуя [31], выберем в качестве определяющих масштабов скорости и длины фазовую скорость длинных линейных волн второй моды C, определяемую как

$$C = \frac{1}{2}\sqrt{gh\frac{\rho_2 - \rho_1}{\rho_0}} \tag{5}$$

и толщину пикноклина *h*.Тогда характерное время определяется как $\tau_0 = 2\sqrt{\rho_0 h/\Delta\rho g}$. Уравнения (1)–(3) перепишутся в безразмерном виде как

$$\frac{\partial \tilde{U}_i}{\partial \tilde{x}_i} = 0, \qquad (6)$$

$$\frac{\partial \tilde{U}_i}{\partial \tilde{t}} + \tilde{U}_j \frac{\partial \tilde{U}_i}{\partial \tilde{x}_j} = -\frac{\partial \tilde{P}}{\partial \tilde{x}_i} + \frac{1}{\text{Re}} \frac{\partial^2 \tilde{U}_i}{\partial \tilde{x}_i \partial \tilde{x}_j} - 4, \qquad (7)$$

$$\frac{\partial \tilde{S}}{\partial \tilde{t}} + \tilde{U}_j \frac{\partial \tilde{S}}{\partial \tilde{x}_j} = \frac{1}{\text{Re Sc}} \frac{\partial^2 \tilde{S}}{\partial \tilde{x}_j^2}, \qquad (8)$$

где Re = Ch/ν – число Рейнольдса; Sc = ν/χ – число Шмидта. Еще один безразмерный параметр появляется в граничных условиях на нижней и верхней границах области: $\varepsilon = H/h$. Как следует из уравнений (6)-(8) в идеальной жидкости (Re = ∞) и в бесконечном по глубине слое воды ($\varepsilon = \infty$)

в уравнениях не содержатся безразмерные параметры подобия и решения уравнений автомодельны [36]. Однако в общем случае можно ожидать, что зависимость от безразмерных параметров сохранится при $\text{Re} \to \infty$ и $\varepsilon \to \infty$ и автомодельность по ним будет неполной [36].

Для характеристики рассматриваемых движений конечной амплитуды определяющие масштабы задачи должны быть дополнены максимальной локальной скоростью U_m и амплитудой волн *a*. Тогда можно определить два безразмерных параметра, характеризующих динамику волн конечной амплитуды: число Фруда и эффективное число Рейнольдса. Число Фруда Fr_m определяется как отношение максимальной локальной скорости U_m к фазовой скорости волн U_c :

$$\operatorname{Fr}_m = \frac{U_m}{U_c}.$$
(9)

Эффективное число Рейнольдса Re_{eff} определяется как

$$\operatorname{Re}_{eff} = \frac{U_m a}{\nu}.$$
 (10)

Важным параметром, характеризующим устойчивость волн, является число Ричардсона:

$$\operatorname{Ri} = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z} / \left(\frac{\partial U}{\partial z}\right)^2 \,. \tag{11}$$

Расчеты проводились в лотке длиной L = 3.5 м и высотой 2H = 0.92 м. Соленость в верхнем и нижнем слоях была $S_1 = 0, S_2 = 30$ соответственно, при постоянной температуре $T = 20^{\circ}$ С. Тогда $\rho_0 = (\rho_2 + \rho_1)/2 = 1009.5 \text{ кг/m}^3$ и $\Delta \rho / \rho_0 = 0.022$, молекулярная вязкость $\nu = 1.14 \cdot 10^{-6} \text{ м}^2 \text{ c}^{-1}$ и молекулярная диффузия соли $\chi = 10^{-9} \text{ м}^2 \text{ c}^{-1}$. Было проведено три серии расчетов при толщине пикноклина h = 0.5;1;2 см. Параметры этих серий приведены в табл. 1. Изменяя размеры перемешанного объема в каждой серии расчетов, были получены наборы волн различных амплитуд a, характеризующихся безразмерной скоростью U_c/C , числами Фруда Fr_m, Рейнольдса Re_{eff} и минимальным значением числа Ричардсона Ri_{min} .

Табл. 1. Параметры расчетов

	h(cm)	Re	ε
	0.5	75	92
	1	200	46
	2	575	23

Задача решалась в квазидвумерной постановке, когда уравнения дискретизировались в нескольких узлах поперек бассейна при условии скольжения на боковых стенках бассейна. На свободной поверхности касательные напряжения отсутствуют, а на дне используются условия прилипания. Предварительные расчеты с различным разрешением сетки, проведенные для различных h и амплитуд волн, показали, что различие между результатами расчетов практически отсутствует при $\varepsilon > 10.$ Это свидетельствует о полной автомодельности задачи по параметру $\varepsilon \to \infty$. Кроме того, результаты расчетов для выбранных параметров вычислительного лотка и генерируемых волн для всего лотка (рис. 1, а) и для верхней половины области (рис. 1, б) также практически совпадают, т.е. влияние дна и свободной поверхности мало. Поэтому приведенные ниже результаты получены для симметричной постановки задачи, что исключает возможность появления первой моды, представляющей собой помеху в виде осциллирующего хвоста, наблюдаемого в лабораторных экспериментах (напр. [24,26]). Разрешение сетки по длине, высоте и ширине составляло $3000 \times 600 \times 5$ узлов или $0.12 \times 0.08 \times 0.12$ см.

2. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис. 2 представлено сравнение рассчитанных фазовых скоростей и длин волн в зависимости от амплитуды волн для сечения x/h=150 с данными экспериментов и теоретическими соотношениями. Согласно слабо-нелинейной теории [18] для стратификации, описываемой функцией (4), зависимости для фазовой скорости и длины волн имеют вид:

$$\frac{U_c}{C} = \sqrt{1 + \frac{3a}{5h}},\tag{12}$$

$$\frac{\lambda}{h} = \frac{5h}{2a},\tag{13}$$

где a – амплитуда волны; λ – половина длины волны (см. рис. 1). Профиль уединенных волн описывается алгебраическим решением [18]:

$$\phi = \frac{a\lambda^2}{\hat{x}^2 + \lambda^2},\tag{14}$$

где ϕ –линия тока в движущейся системе координат $\hat{x} = x - Ct$.

Согласно (12)–(13) фазовая скорость растет с ростом амплитуды волн, тогда как длина волны падает. Как следует из рис. 2, результаты моделирования и эксперименты хорошо описываются

Рис. 2. Зависимость фазовой скорости от амплитуды: сравнение аналитических решений с результатами лабораторных экспериментов (*a*) с результатами численных расчетов (*b*). Зависимость длины волны от амплитуды: (*b*) – сравнение аналитических решений с результатами лабораторных экспериментов, (*b*) – с результатами численных расчетов

слабо-нелинейной теорией при a/h < 1. Профиль уединенной волны (14) также хорошо согласуется с численным решением уравнения Навье-Стокса. Однако, как следует из рис. 2, для a/h > 1 длина волны растет с увеличением амплитуды, а фазовые скорости существенно отклоняются от предсказываемых слабо-нелинейной теорией. Для установившихся волн больших амплитуд численные решения уравнения Дюбрейль-Жакотен [21] предсказывают существование замкнутых линий тока в движущейся системе координат и перенос массы такими волнами. В предельном случае двухслойной стратификации скорость перемещения симметричного возмущения постоянной промежуточной плотности находится из соотношения [28], перенормированного в [31] на параметры слоя раздела:

$$\frac{U_{\rm c}}{C} = \frac{\beta}{\sqrt{\alpha}} \sqrt{\frac{h_0}{h}},\tag{15}$$

где α – отношение максимальной высоты возму-

щения (интрузии) h_0 к ее длине $2l_0$,

$$\alpha = \frac{h_0}{2l_0} = 0.232,\tag{16}$$

постоянная β =0.622. Решение [28] предсказывает, что форма этих интрузий подобна и отношение высоты h_0 к длине $2l_0$ – величина постоянная. Несмотря на большую идеализацию механизмов динамики, решение [28] удивительно хорошо предсказывает зависимость скорости распространения длины волн от амплитуды при 1 < a/h < 5 (рис. 2). Необходимо подчеркнуть, однако, что в рамках идеальной жидкости это решение неустойчиво [28]. Как следует из рис. 2, δ , не только интрузии, но и сами волны с амплитудами 1 < a/h < 5 подобны по форме. Такое автомодельное поведение волн было также отмечено в работах ([24, 29]). В работе [24] результаты экспериментов были аппроксимированы линейной зависимостью длины вол-

ны от амплитуды:

$$\lambda = 0.95 + 2.1a \tag{17}$$

с отношением длины волны к амплитуде 2.1, близким к решению (14). В то же время, при a/h > 5теоретические кривые [28] отклоняются от результатов моделирования, согласно которым скорость и длина волн перестают зависеть от амплитуды волн. Необходимо отметить, что результаты экспериментов и численных расчетов фазовой скорости и длин волн демонстрируют полную автомодельность по параметрам Re и ε .

Изменениям в интегральных характеристиках волн (скорость и длина волны) соответствуют изменения во внутренней структуре волн. На рис. З приведено распределение в вертикальных сечениях вдоль волн поля солености и пассивного трассера (а), завихренности (б) и поля линий тока в движущейся системе координат \hat{x} = $x - U_c t$ (в), для трех характерных высот волн a/h = 0.4; 2.5; 6.4 для серии 1 (h=0.5 см). Соответствующие вертикальные профили горизонтальной скорости через центр волны приведены на рис. 4. Волны малой амплитуды a/h = 0.4 перемещаются без захвата жидкости в ядре. Линии тока в движущейся системе координат разомкнуты и неплохо описываются алгебраическим решением уравнения (14), показанным жирной штриховой линией на рис.3, в. Волна малой амплитуды на рис.3, б представляет собой пару областей завихренности разного знака. Вертикальный профиль скорости на рис. 4, а демонстрирует наличие максимума на оси симметрии, который, однако, намного меньше скорости перемещения волн $(Fr_m = U_m / U_c = 0.33).$

Поведение волн изменяется, когда максимум локальной скорости превышает фазовую скорость волн (Fr_m > 1). Как следует из рис. 3, в волнах большой амплитуды (a/h = 2.5) линии тока образуют замкнутый контур (интрузию), внутри которого переносится жидкость. На вертикальном профиле скорости на рис. 4, б видна область вблизи оси, скорости в которой превосходят скорость перемещения волн, а соответствующее число $Fr_m = 1.22$. На рис. 3, *а* контур области с замкнутыми линиями тока сопоставлен с решением [28], показанным жирной штриховой линией. Как следует из рисунка, оба контура неплохо совпадают. Наличие относительно небольшой вязкости в численных расчетах ($\operatorname{Re}_{eff} = 850$) стабилизирует решение [28]. Однако, в отличие от этого решения, жидкость внутри замкнутой области не находится в покое и интрузия не является "солидоном" [28]. Слабая циркуляция внутри интрузии (рис.

Рис. 5. Зависимость числа Фруда от амплитуды волн. Штриховая линия $Fr_m = 1$ разделяет докритические и сверхкритические режимы волн

3, б) может быть двухвихревая или четырехвихревая [26,31] с соответствующим распределением завихренности. На вертикальном профиле скорости (рис. 4, б) наличию циркуляции соответствует провал скорости у оси симметрии. Результаты расчетов подтверждаются данными измерений скорости в лабораторном эксперименте [26]. Наличие циркуляции внутри интрузии, обусловленное бароклинными силами, адвекцией завихренности и вязкостью [26], приводит к постепенному выносу массы интрузии и вовлечению жидкости из окружающей жидкости. В то же время, минимальное число Ричардсона в волне составляет около 0.35.

При a/h > 4.7 для случая h = 0,5 см волна уже является неустойчивой. На рис. 3 представлено распределение солености, трассера, линий тока и завихренности для волны амплитудой a/h = 6.4. Минимальное число Ri_{min} на границе интрузии падает до значения 0.06 (рис. 4, в), что значительно меньше критического значения числа Ричардсона для линейной неустойчивости, предсказываемого теорией для параллельных стратифицированных потоков [38-39]. Сдвиговая неустойчивость приводит к формированию вихрей Кельвина-Гельмгольца (КГ). Отношение масштаба вихрей КГ λ_{KH} к толщине слоя раздела Δh составляет $\lambda_{KH}/\Delta h \approx 8$, что согласуется как со значением 7.5 в теории параллельных стратифицированных потоков [38-39], так и со значением 7.9 в

Рис. 3. Распределение в вертикальных сечениях вдоль волн поля солености и пассивного трассера (*a*), завихренности (δ) и поля линий тока в движущейся системе координат $\hat{x} = x - U_c t$ (*b*), для трех характерных высот волн a/h = 0.4; 2.5; 6.4 в серии 1 (h=0.5 см). Остальные обозначения приведены тексте

Рис. 4. Рассчитанные вертикальные профили горизонтальной скорости по центру волны для амплитуд волн a/h = 0.4 (a), a/h = 2.5 (б) и a/h = 6.4 (в) в серии 1 (h=0.5 см). На (б) приведено сравнение с лабораторным экспериментом [26]. На (в) приведено распределение числа Ричардсона Ri

Рис. 6. Зависимость минимального числа Ричардсона Ri_{min} от амплитуды волн (a) и эффективного числа Рейнольдса Re_{eff}. Заштрихованная полоса между Ri_{min} = 0.1 и 0.15 разделяет устойчивые и неустойчивые волны

лабораторном эксперименте [7] для волн большой амплитуды.

Неравномерность потока в уединенной волне предполагает, что использование классического числа Ричардсона в качестве индикатора неустойчивости может быть недостаточным. На рис. 3 показано горизонтальное распределение потенциально неустойчивых областей ("карманов" [7]) с ${
m Ri}$ <0.25. Горизонтальная длина L_x карманов с Ri <0,25 является полезным прогностическим показателем неустойчивости [7], так как она характеризует горизонтальную протяженность, где может развиваться неустойчивое движение. Предложенное для волн первой моды [7] эмпирическое соотношение $L_x/\lambda = 0.86$ отделяет потенциально устойчивые $(L_x/\lambda < 0.86)$ волны от неустойчивых волн. Вычисленное для волны второй моды на рис 3, б значение L_x/λ равно 0.76, что ниже критического значения, найденного для волн первой моды. Это свидетельствует об отличиях в механизме неустойчивости: в случае волн первой моды слой раздела отделяет два разнонаправленных потока (рис. 10 в [9]), тогда как в волне второй моды слой раздела отделяет интрузию со слабой циркуляцией от внешнего потока (рис. 4, в). Аналогично, более низкие оценки $(L_x/\lambda = 0.37 \div 0.8)$ были получены [32] для неустойчивых интрузий.

Как показано на рис. 5, с ростом амплитуды волн число Фруда Fr_m сначала почти линейно растет и, как уже отмечалось выше, при a/h > 1.5

течения в волне становятся сверхкритическими, $Fr_m > 1$ (рис. 4), приводя к формированию интрузии с наличием областей рециркуляции. В дальнейшем рост числа Фруда замедляется и в диапазоне 2 < a/h < 5 оно почти постоянно со средним значением 1.22, немного превосходящим критическое значение $Fr_m = 1$, тогда как число Рейнольдса Re_{eff} увеличивается в этом диапазоне почти в 4 раза. Это указывает на гидравлически саморегулирующийся механизм распространения интрузий. Заметим, что для "солидона" [28] значение числа Фруда для интрузии $Fr_m \equiv 1$. Как следует из рис.5, параметр Fr_m также демонстрирует полную автомодельность по параметру Re_{eff} .

Однако, как следует из рис. 6, а зависимость минимального в волне числа Ричардсона Rimin от амплитуды волн a/h неавтомодельна. Для более широкого пикноклина число Ричардсона падает быстрее. Как следует из рис. 6 в волнах малой амплитуды Rimin быстро падает с ростом амплитуды. Затем, в диапазоне существования устойчивых интрузий, переносимых волнами, значение Ri_{min} падает до границы $0.1 < \text{Ri}_{min} < 0.15$, после которой в интрузиях возникают неустойчивости. Оценка для границы между устойчивыми и неустойчивыми волнами близка к оценкам $\operatorname{Ri}_{min} = 0.075 \pm$ 0.035 [40] и Ri_{min} = 0.092 ± 0.016 [7], полученным в лабораторных экспериментах, и $Ri_{min} = 0.10 - в$ численных расчетах [9,11] для волн первой моды. Заметим, что граница между устойчивыми и неу-

Рис. 7. Относительная скорость затухания амплитуды вол
н в зависимости от амплитуды волн (a) и эффективного числа Реунольд
са (b)

стойчивыми интрузиями соответствует $a/h \approx 4.7$ для h = 0.5 см, $a/h \approx 3$ для h = 1 и $a/h \approx 2$ для h = 2, и можно предполагать, что эта граница зависит от чисел Рейнольдса. Из соображений размерности минимальное число Ричардсона $\operatorname{Ri}_{min} = \Phi(a/h, Re_{eff})$. Предполагая неполную автомодельность по параметру Re_{eff} , получаем зависимость

$$\operatorname{Ri}_{min} = \operatorname{Re}_{eff}^{n} \Psi(a/h) \tag{18}$$

где n – показатель степени; $\Psi(a/h)$ – некоторая функция от a/h. Как следует из рисунка 6, δ , данные расчетов могут быть аппроксимированы универсальной степенной зависимостью

$$\operatorname{Ri}_{min} = A(a/h)^m \operatorname{Re}_{eff}^n, \tag{19}$$

где m = n = -1.25; константа A = 4693. Диапазон критических значений 0.1 < Ri_{min} < 0.15 на этой универсальной кривой располагается при 3000 < $(a/h) \operatorname{Re}_{eff} < 5000$. При больших $(a/h) \operatorname{Re}_{eff}$ число Ri_{min} уменьшается, приводя к усилению неустойчивости и интенсивному размыванию интрузии при почти постоянном Fr_m (рис. 5). Таким образом, в зависимости от значений параметров Fr_m и Rimin можно выделить три основных класса симметричных волн второй моды, распространяющихся в слое раздела между двумя глубокими однородными слоями воды: (а) слабонелинейные волны при $Fr_m < 1$, (б) устойчивые сильно нелинейные волны, переносящие массу, при $Ri_{min} > 0.15$ и $\mathrm{Fr}_m \approx 1.2$ и (в) неустойчивые сильно нелинейные волны при $\operatorname{Ri}_{min} \leq 0.1$.

Необходимо подчеркнуть, что в каждом из выделенных классов волны эволюционируют с разной скоростью под действием различных механизмов. На рис. 7, а приведена нормализованная безразмерная скорость затухания внутренних волн в зависимости от безразмерной амплитуды волн. Как следует из рисунка, и в этом случае нет полной автомодельности, однако автомодельности нет и для перенормированной зависимости на рис. 7, б, что указывает на разные механизмы диссипации для разных классов волн. В целом, рассчитанные зависимости для скорости затухания волн согласуются с доступными данными экспериментов [24] и численными расчетами [33]. Скорость затухания для устойчивых и неустойчивых интрузий почти постоянна и существенно меньше, чем для слабонелинейных волн, несмотря на то что главным механизмом диссипации энергии и перемешивания в случае неустойчивых интрузий является неустойчивость КГ. При больших временах амплитуда слабонелинейных волн, для которых число Рейнольдса невелико, падает за счет вязкости, а устойчивые интрузии медленно размываются обтекающим потоком и внутренней циркуляцией, что приводит к потере массы, переносимой волнами, и, в конечном итоге, к превращению в волны, докритические по числу Фруда. В свою очередь, неустойчивые волны также теряют массу за счет перемешивания вихрями КГ и через некоторое время становятся устойчивыми волнами, переносящими массу. Аналогично эволюционировали интрузии в лабораторных экспериментах [26] и в численном эксперименте [32], когда в начальный момент волна описывалась решением уравнения Дюбрей-Жакотен [21].

Отметим, что эволюция волн происходит таким образом, что число Ричардсона растет со временем по автомодельной зависимости (рис. 7, δ). На этом рисунке приведена эволюция волны с амплитудой a/h = 6.4 и начальным числом Ричардсона $\operatorname{Ri}_{min} = 0.06$, в процессе которой амплитуда волны падает до значения a/h = 5, а число Ri_{min} возрастает до 0.12.

выводы

По результатам численных экспериментов проведен анализ структуры внутренних волн второй моды для широкого диапазона амплитуд волн. Показано, что наиболее важными характеристиками, влияющими на течение, являются локальное число Фруда Fr_m, вычисляемое как отношение максимальной локальной скорости к фазовой скорости волн, и минимальное число Ричардсона Ri_{min}. В зависимости от значений параметров Fr_m и Ri_{min} выделены три основных класса симметричных волн второй моды, распространяющихся в слое раздела между двумя глубокими однородными слоями воды: (а) слабонелинейные волны при $Fr_m < 1$, (б) устойчивые сильно нелинейные волны, переносящие массу, при $Ri_{min} > 0.15$ и $\mathrm{Fr}_m \approx 1.2$ и (в) неустойчивые сильно нелинейные волны при $\operatorname{Ri}_{min} \leq 0.1$. Обнаружена неполная автомодельность динамики волн по числу Рейнольдса, выражающаяся в неисчезающей при больших Re_{eff} зависимости от него параметра Ri_{min} и скорости затухания амплитуд волн. Эволюция волн происходит таким образом, что число Ричардсона растет со временем по автомодельной зависимости.

Работа выполнена в рамках совместного проекта РФФИ-ДФФД "Интенсивные внутренние волны в океане и их влияние на подводные сооружения и платформы" (проекты ДФФД № Ф53.6/009 и РФФИ № 13-05-90424-Укр-ф-а). Частично представленные результаты получены в рамках реализации ФЦП "Научные и научно-педагогические кадры инновационной России"на 2009-2013 гг. (№ 14.В37.21.0642) (Т.Т)

- 1. Helfrich K. R., Melville W. K. 2006 // Annu. Rev. Fluid Mech.– 2006.– **38**.– P. 395 425.
- 2. Apel J. R., Ostrovsky L. A. , Stepanyants Y. A. , Lynch J. F. Internal solitons in the ocean and their

effect on underwater sound // J. Acoust. Soc. Am. – 2007.– $\mathbf{121}.-$ P. 695–722.

- Maderich V., Brovchenko I., Terletska K., Hutter K. Numerical simulations of the nonhydrostatic transformation of basin-scale internal gravity waves and wave-enhanced meromixis in lakes // Ch. 4 in Hutter K. (Ed.) Nonlinear internal waves in lakes... Springer. Series: Advances in Geophysical and Environmental Mechanics, 2012.- P. 193-276.
- Мадерич В.С., Никишов В.И., Стеценко А.Г. Динамика внутреннего перв стратифицированной среде.– Киев: Наукова Думка, 1988.– 240 с.
- Grimshaw R., Pelinovsky E., Talipova T. Modeling internal solitary waves in the coastal ocean. // Survey in Geophysics.- 2007.- 28.- P. 273-298.
- Moum J.N., Farmer D.M., Smyth W.D., Armi L., Vagle S. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf // J. Phys. Oceanogr.- 2003.- 33.- P. 2093-2112.
- Fructus D., Carr M., Grue J., Jensen A., Davies P. A. Shear-induced breaking of large internal solitary waves // J. Fluid Mech.– 2009.– 620.– P. 1–29.
- Carr M., Fructus D., Grue J., Jensen A., Davies P. A. Convectively-induced shear instability in large internal solitary waves // Phys. Fluids.- 2008.- 20.-P. doi:10.1063/1.3030947.
- Maderich V., Talipova T., Grimshaw R., Terletska K., Brovchenko I., Pelinovsky E., Choi B.H. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. // Phys. Fluids.-2010.- 22.- P. doi:10.1063/1.3455984.
- Talipova T., Terletska K., Maderich V., Brovchenko I., Pelinovsky E., Jung K.T., Grimshaw R., Internal solitary wave transformation over a bottom step: loss of energy // Phys. Fluids.- 2013.- 25.- P. 032110; doi: 10.1063/1.4797455.
- 11. Barad M.F., Fringer O. B. Simulations of shear instabilities in interfacial gravity waves // J. Fluid Mech.– 2010.-644.– P. 61-95.
- Konyaev, K. V., Sabinin K. D., Serebryany A. N. Large amplitude internal waves at the Mascarene Ridge in the Indian Ocean // Deep Sea Res. Part I.– 1995.– 42.– P. 2075 – 2091.
- Yang Y. J., Fang Y. C., Chang M.-H., Ramp S. R., Kao C.-C., Tang T. Y. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea // J. Geophys. Res.- 2009.- 114.-P. doi:10.1029/2009JC005305.
- Yang Y. J., Fang Y. C., Tang T. Y., Ramp S. R. Convex and concave types of second baroclinic mode internal solitary waves // Nonlin. Processes Geophys.- 2010.- 17.- P. 605-614.
- Shroyer E. L., Moum J. N., Nash J. D. Mode-2 waves on the continental shelf: ephemeral components of the nonlinear internal wave field // J. Geophys. Res.– 2010.– 1115.– P. doi:10.1029/2009JC005605.
- Ramp S. R. Y. J. Yang D. B. Reeder, and F. L. Bahr Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan // Journal of Geophysical Research.- 2012.- 117.-P. 30-43.
- Christie D. R. The morning glory of the Gulf of Carpentaria: a paradigm for non-linear waves in the lower atmosphere // Austral. Met. Mag. – 1992. – 41. – P. 21–60.

- Benjamin, T. B. Internal waves of permanent form in fluids of great depth. // J. Fluid Mech.- 1967.-29.- P. 559-592.
- Davis, R. E., Acrivos A. Solitary internal waves in deep water // J. Fluid Mech.- 1967.- 29.- P. 593-607.
- Ono H. Algebraic solitary wave in stratified fluids. // J. Phys. Soc. Jpn.- 1974.- 39.- P. 1082–1091.
- Dubreil-Jacotin L. Sur les ondes type permanent dans les liquides heterogenes // Atti R. Accad. Naz. Lincei, Mem. Cl. Sci. Fis., Mat. Nat..- 1932.- 15.-P. 44-72.
- Kamachi, M. and H. Honji Steady flow patterns of internal solitary bulges in a stratified fluid // Phys. Fluids .- 1982.- 15.- P. 1119 - 1120.
- Мадерич В.С., Кулик А. И. Коллапс интрузий в устойчиво стратифицированной среде // Изв. РАН, Физ. Атм. Океана.– 1992.– 28.– С. 1197–1204.
- Stamp, A. P., Jacka, M Deep-water internal solitary waves // J. Fluid Mech.– 1995.– 305.– P. 347–341.
- Honji H., Matsunaga, Y. Sugihara, K. Sakai Experimental observation of internal symmetric solitary waves in a two-layer fluid // Fluid Dynamics Research .- 1995.- 15.- P. 89–102.
- Maderich, V. S., Heijst, G. J. F. van Brandt, A. Laboratory experiments on intrusive flows and internal waves on a pycnocline // J. Fluid Mech.– 2001.– 432.– P. 285–311.
- Mehta A. P., Sutherland B. R., Kyba P. J. Interfacial gravity currents. Part II. Wave excitation // Phys. Fluids .- 2002.- 14.- P. 3558 - 3569.
- Козлов В. Ф., Макаров, В. Г. Об одном классе стационарных гравитационных течений со скачком плотности. // Изв. РАН, Физ. Атм. Океана.– 1990.– 26.– С. 395–402.
- 29. Pullin, D. I., Grimshaw, R. H. J. Finite-amplitude solitary waves at the interface between two

homogeneous fluids // Phys. Fluids .- 1988.- **31**.- P. 3550-3559.

- Гаврилов Н.В, Ляпидевский В.Ю Симметричные уединенные волны на границе раздела жидкостей // ДАН.– 2009.– 429.– С. 187–190.
- Terez, D. E., Knio, O. M. Numerical simulations of large-amplitude internal solitary waves // J. Fluid Mech.- 1998.- 362.- P. 53-82.
- Helfrich K.R. White B.L. A model for largeamplitude internal solitary waves with trapped cores // Nonlin. Processes Geophys..- 2010.- 17.- P. 303-318.
- Salloum M, Knio O. M., Brandt A Numerical simulation of mass transport in internal solitary waves // Phys. Fluids.- 2012.- 15.- P. 89–102.
- Olsthoorn J., Baglaenko A., Stastna M. Analysis of asymmetries in propagating mode-2 waves // Nonlin. Processes Geophys.- 2013.- 20.- P. 59–69.
- Akylas T., Grimshaw R. Solitary internal waves with oscillatory tails // J. Fluid Mech.- 1992.- 242.-P. 279-298.
- Баренблатт Г.И. Подобие, автомодельность, промежуточная асимптотика. Теория и приложения к геофизической гидродинамике.– Л.: Гидрометеоиздат, 1982.– 256 с.
- Kanarska Y., Maderich V. A non-hydrostatic numerical model for calculating free-surface stratified flows // Ocean Dynamics. 2003. - 53. - P. 176–185.
- Howard L. N. Note on a paper by John W. Miles // J. Fluid Mech.- 1961.- 10.- P. 509-569.
- Miles J.W., Howard L. N. Note on a heterogeneous shear flow // J. Fluid Mech.– 1964.– 20.– P. 331–69.
- Troy C. D. Koseff J. R. The instability and breaking of long internal waves // J. Fluid Mech.- 2005.-543.- P. 107-298.