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A self-similar flow with the splash jet generated by water entry of an expanding two-
dimensional arbitrarily shaped body is studied theoretically based on the incompress-
ible velocity potential theory. The flow is assumed to be irrotational, the liquid to
be ideal, and gravity and surface tension are ignored. The solution is obtained in the
form of integral equations using the integral hodograph method. It is shown the so-
lution with the detached splash jet exists in all ranges of expansion speeds from zero
to infinity. Detailed results in terms of pressure distribution, free surface shape and
streamlines, and contact angle of the splash jet are presented.
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1. INTRODUCTION

The similarity solutions play an important role in fluid mechanics. When a self-similar
solution exists, it enables variables in the governing equations to be combined into new ones,
and the number of variables is reduced as a result. It becomes particularly effective when a
partial differential equation becomes an ordinary one or an unsteady problem becomes steady
in the self similar variables. In some cases, such a transformation allows an explicit form
of the solution of the problem to be obtained, or the solution procedure to be significantly
simplified. The result can then provide some real insights into the physics of the problem.

For the liquid/structure impact problem, its mathematical modelling is very challenging
due to rapid changes of the free-surface shape and velocity in local areas, together with high
speed jets. The pioneering works on water impact problem based on impulse solution for a
plate were carried out by von Karman [1] and Wagner [2]. The complete linearized solution
of the water entry of a wedge was first proposed by Mackie [3]. Garabedian [4,5], extensively
studied main properties of the water-entry flows, including existence and uniqueness of the
similarity solutions and the limit of the contact angle between the free surface and the wedge.

Remarkable progress in the understanding of fluid/structure and fluid/fluid impact phe-
nomena has been achieved over the last decades, which has been based on further devel-
opment of Wanger’s theory together with the technique of matched asymptotic expansions
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(Armand and Cointe [6], Howison et al. [7], Korobkin [8]). Different simplified models for
the wedge entry problem have been also proposed by Greenhow [9], and Mei et al. [10].

In general, the water-entry processes are fully transient, and the temporal and spatial
variables are fully independent. However, in some cases, especially at initial stage of impact
and/or in some local areas, the flow may be treated as self similar, which simplifies the
analysis and gives some insight into the flow topology during the impacts. Examples include
those by Cumberbatch [11] for a liquid wedge impacting on a flat wall, Dobrovolskaya [12]
and Zhao and Faltinsen [13] for a symmetric solid wedge entering a calm water surface,
Semenov and lafrati [14] for water entry of an asymmetric wedge, Semenov et al. [15] for an
impact between two liquids of the same density, lafrati and Korobkin [16] for flow near the
corner of a horizontal plate impacting a flat surface at the initial stage.

The problem of the expanding body entering the free surface has another physical impli-
cations. One of the practical problems is the wave flow generated by a fast ship, in which
the so called 2D + ¢ method has been both used in the simulation (Faltinsen [17]) and in
the experiment (Shakeri et al. [18]). In such a method, the flow at each transverse section
is considered as two-dimensional (2D). As the section under consideration moves along the
ship length from the bow, it effectively expands. For a fast ship with shaped sections, the
problem becomes that of an expanding body considered here. Similar problem arises during
ditching of an aircraft, that is an emergency condition that ends with the planned impact of
the aircraft with water (Climent et al. [19]).

In this study we consider the nonlinear self-similar problem of the cylindrical body en-
tering the undisturbed flat free surface. In particular, the results in section 3 are presented
for a circular cylinder. The radius of the cylinder expands at a speed that is in a fixed
ratio to the entry speed. The integral hodograph method (Semenov and Cummings [20]) is
used to derive analytical expressions for the complex velocity, for the complex potential and
mapping function, all defined in a parametric plane for which the first quadrant is chosen.
It enables the original partial differential equation with nonlinear boundary conditions on
the unknown free surface to be reduced to a system of integro-differential equations along
straight lines in the parametric plane. The coupled equations are then solved through suc-
cessive approximations. The solution contain one free parameter b, which determines the
speed of expansion of the body. As b — 0, the expansion speed of the body and the velocity
at the tip of the splash approach infinity. However, at b = 0 the singularity in the mapping
function corresponding to the tip of the splash jet disappears and the solution corresponds
to the splash jet attached to the body.

The results are provided through the streamlines, free surface shape and pressure distri-
butions along the wetted surface of the cylinder in the wide range of expansion speeds.

2. FORMULATION OF THE PROBLEM AND THE SOLUTION METHOD-
OLOGY

We consider an arbitrary shaped body which expands in time in a self-similar way during
its entry into a liquid of infinite depth at constant vertical velocity V. The liquid is as-
sumed to be inviscid and incompressible, the flow is irrotational, gravity and surface tension
are ignored. The flow region in the physical complex plane Z = X + Y, which bound-
ary consists of the wetted part of the body and the free surface, can be written through

450



ISSN 2616-6135. I'IV/IPOJIMHAMIKA I AKYCTHUKA. 2018-2019. Tom 1(91), Ne 4. C. 449-168.

that in the stationary, or similarity plane z = = + ¢y in terms of the self-similar variables
v =X/(Vt),y =Y/(Vi):

Z(S,t) =Vitz(s), (1)

where ¢ is the time, S and s = S/(Vt) are the arc length coordinates in the physical and
stationary planes, respectively.

The complex-velocity potential W (Z,t) for the self-similar flow can be written as
W(Z,t) = ®(Z,t) +iV(Z,t) = Viw(z) = Vtp(z) + it (2)], (2)

where ¢ and v are the velocity potential and the stream function in the similarity plane.

The problem is to determine the function w(z) which conformally maps the similar-
ity plane z onto the complex-velocity potential region w. For solving the problem we use
hodograph method and introduce a parameter plane ¢ as suggested by Joukovskii [21] and
Michel [22]. Instead of function w(z), they proposed to find two complex functions both
defined in the ( is plane, which are the complex velocity, dw/dz, and the derivative of the
complex potential, dw/d(. Once these functions are found, the relation between the param-
eter and stationary planes can be determined as follows:

where zp = 2(()¢=o-

As suggested by Gurevich [23] we chose the first quadrant of the (-plane shown in
(Fig. 1b) as the parameter region which corresponds to the flow region in the stationary
plane in (Fig. 1a). The origin of the Cartesian system of coordinates zy is chosen at the
bottom point of the body as shown in (Fig. la). The half space of the liquid with the flat
undisturbed free surface moves with constant velocity V' along y-axis and impacts the body
at time instant ¢ = 0. The flow is symmetric respect to y-axis, therefore, we can consider
only right hand side of the flow region. At the instant of impact points A, O, B coincide with
the origin. Immediately after the impact ¢ > 0, the flow topology changes. The splash jet
O, B with its tip angle p at point B and point O of flow detachment are appear.

The functions dw/dz and dw/d( conformally map the parameter region onto the regions
of the complex velocity and the derivative of the complex potential. The basic theorem on
conformal mapping allows us to fix three arbitrary points in the parameter plane, which are
chosen as OD (a point at infinity) and A, as shown in (Fig. 1b). In this plane, the interval
0 < n < b of the imaginary axis corresponds to the splash jet OB and the interval b < n < co
corresponds to the main free surface BD. The interval 0 < n < 1 of the real axis corresponds
to the wetted part of the body, and the rest of the positive real axis (1 < < co) corresponds
to the symmetry line AD. The point ¢ = ib in (Fig. 1b) is the image of the tip of the splash
jet in the similarity plane (point B). The parameter b is unknown and have to be determined
from the solution. In order to determine the functions dw/dz and dw/d( we shall formulate
appropriate boundary-value problems for each of them in the (-plane.
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Fig. 1. Continuous and step changes are shown by solid lines and dashed lines, respectively
(for a blunt body, the angle o = 7/2):

a — similarity plane z = x + iy, of the vertical water-entry of an expanding shaped body;
b — the ¢ plane where arrows in the closed line show the path of integration in (11),
which is opposite to the direction of vector 7 and variable S;
¢ — variation of the velocity angle w(¢) = arg(vs + iv,,)
to the flow boundary along the entire of the flow region

2.1. Expression for the complex velocity dw/dz

At this stage we assume that the velocity direction along the body, or the function §(§) =
—arg(dw/dz)¢—¢, and the velocity magnitude on the free surface OBD, or the function
v(n) = |dw/dz|¢=, are the known functions of the coordinates of the real and imaginary
axes, respectively. With these notations, we have

dw _B(g)’ O<§<17 7]:()’
ORISR i (@)
—7m/2, 1<&<o0, n=0.
d
—l=um, O0<n<os, =0 (5)

The following integral formula (Semenov and lafrati [14], Semenov and Cummings [20])
makes it possible to solve the mixed boundary value problem (4) and (5) respect to the
complex function dw/dz:

[e.e] o

dw 1 [dyx ¢(+¢ i [dlnv ¢—1n .
a e |2 [ () sz [ () e o
0

0

where vy, = 1 due to the chosen velocity at infinity (point D, ( — o) as the reference
velocity, V, and xo, = —7/2 along the line of symmetry AD’. The velocity direction, or the
function x (&), has jump Ays = « at point A (£ = 1) since 5(§) > 71/2 —aas - 1 —¢,
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and B(§) =7m/2 as £ = 1+ ¢, where ¢ — 0. Using (4) and evaluating the integral over the
jump of the function x(§), equation (6) becomes

d_w_v (C_l)a/ﬂ'x
dz " (+1
1 00 (7)
1 [dS §E—C i [dlnv m —C .
oo |2 [ () -2 [ G () )
0

0

where £y = (£)e=o. The functions 3(¢) and v(n) will be determined later from the kinematic
and dynamic boundary conditions.

2.2. Expression for the derivative of the complex potential dw/d(

In order to obtain expression for the derivative of the complex potential it is useful to
introduce the unit vectors n and 7 on the fluid boundary, which are normal and tangent to
the flow boundary, respectively. The former is directed outward from the liquid region, and
while one moves in the 7 direction along the boundary, the arc length coordinate s increases
and the liquid region is on the left hand side (see Fig. 1a). With these notations, we have

dw = (vs + ivy,)ds = ve™ds, (8)

where w(() = arg(vs + iv,), v, and vs are the normal and tangential velocity components,
respectively. Variation of the function w(() along the entire boundary of the liquid region
is shown in (Fig. 1c). The arrows in (Fig. 1b) show the direction of variation of w(({) only.
w(()¢=e = —m on the interval 1 < £ < oo, since v, = 0 and vy < 0, and w(()¢=¢ = () on the
interval 0 < £ < 1 corresponding to the wetted part of the body. (1) = w(()¢=s, changes
continuously along OB and BD, or on the intervals (0,b) and (b, c0) on the n — axis. At
point B 0(n) has a jump Ag = —7 + u, where p is the angle at point B. Based on the above
considerations, we can write the function w(() as follows:

-, 1< (< oo, n =20,
dw 7(6)7 0<C< 17 77:07
(0 =g (57 = )
A(n), £E=0, 0<n<b,
L A(n) + A, £E=0, b<n< oo,

where A(n) is a continuous function (9) allows us to determine the argument of the derivative
of the complex potential:

U(c) = arg (C;—f) = arg (Z—f) + arg (Z—j) =w(() +v,

0, 0<¢<oo, n =0,
/2, £E=0, 0<n<oo.
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The function A(n) increases from Ao = 0(n),=0 = 7(§)e=0 = Yo at point O to Ao = A(N) 500 =
0(1n)p—oo + T — p=3/2m — p at point D (see Fig. 1c). Therefore, the angle p is determined
as i =3/2m — A

The following integral formula (Semenov and lafrati [14], Semenov and Cummings [20])
makes it possible to solve the uniform boundary value problem (9) and (10) respect to the
complex function dw/d(:

d v v
2 _ Kexp %/—m(g — e+ = /d— n(n® + ¢*)dn + ide | | (11)

00 0

where K is a real factor and Yoo = Y(()|¢|»- By substituting (9) and (10) into (11) and
evaluating the integrals over each step change of the function 9¥(¢), we obtain

o)

= KU+ 1) o |~ / (e = s+ - [ Gt + hdn+ i . (12

0

dw
¢

The integration of this equation allows us to obtain the function of the complex potential,

w(():

¢
w(C) :wA+K/<I(C/2+b2)N/W1X

1 [d d)x
coxp | =2 [ (@ = ¢+ 1 [ il +¢2)dn+ i '

0 0

From (7) and (12) the derivative of the mapping function can be obtained as

a/m
1
¢+ ) y

dz . EC(CQ _i_b?)ﬂ/W*l (C_l

d_C_Uo

dﬁ £E-¢ 7 OOdlnv m —C
X oxp /§ (€+C>d£+_0/ an ln<m+<>d”_ (14)

o0

1 [d 1 d)\
! / T - s+ [ Gt + hdn+ i
0 0

Integration of the above equation in the parameter region yields the mapping function z =
z(() relating the parameter and similarity planes.

In the physical plane the position of point B, Zg = Vtzp, can be related to the particle
velocity at the tip of the splash jet, which is the constant Vvge®s. Thus we can write

|ZB| = UB, (15)
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where the left hand side zp = 2(¢)¢=i and v = v(n),=p from which the parameter K is
determined.

The parameter b is the free parameter of the solution, which determines the expansion
speed of the cylinder. For steady Helmholtz flow point B approached point D, or b — oo
as can be seen from (Fig. 1 b). The velocity magnitude on the free surface is constant,
v(N) = Vs, or dlnwv/dn = 0 and the normal component of the velocity on the free surface
is zero, which means A(n) = 0(n) = 0 and () = 0. Then, the angle at point B becomes
1=31/2 — A, = /2. By substituting these expressions into (7) and (12) we obtain

dw (-1 0 dﬁ §—¢
E‘”‘)(cﬁ) =P /5 (£+c)d€_l(ﬁo+“>’ 16)
dw

which is the solution for steady Helmholtz flow past the fixed curvilinear body.

Egs. (7), (12)=(14) contain the functions B(£), v(£), v(n) and A(n), which have to be
determined from the dynamic and kinematic boundary conditions on the free surface and
the wetted part of the body.

2.3. Determination of the functions v(n) and A(n) on the free surface

By exploiting the Bernoulli equation and taking the advantage of the flow self-similarity, the
dynamic boundary conditions on the free surface OB D can be derived in the following form
(Semenov and Iafrati [14]),

d\ v+ scos dlnv

dn ~ ssinf  dp

(18)

where d\/dn = df/dn from (9) is used. The arc length coordinate along the free surface
with its origin at point B is determined as

S(n)Z—j

where dw/d( is used from (12).
The kinematic boundary is obtained in the following form by exploiting the fact that the
acceleration of a liquid particle is orthogonal to the free surface along which the pressure is

constant: L dl p p
nov w
— = — — ) 2
tgd dn  dn {arg (dZ)} 20)

Determining the argument of the complex velocity from (7) and substituting the result
into (20) the following integral equation for the function dInwv/dn is obtained:

dz
dg

dw
d¢

n n
dw /dC| ¢y 1
dn/ — _ | w/ C|C— n dn/ — _/ d?]l, (19)

|dw/dz|c=iy v(n)

¢=in’ ¢=in’

Ttgl dn n
0

1 dl 1 Tdlno 21 % 1 17 9
dlnv /dnv n , a —I——/dﬂ fdn’. (21)

dy = == &
dn/ 77/2_772 n 7T1+7’]2 d§§2+,’72
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The system of equations (15) and (17) enables us to determine the functions 6(n) and
dInv/dn along the imaginary axis of the parameter plane. Then, the velocity magnitude on
the free surface and the function A(n) can be obtained from

OOdln’u ,
o) =exp | - / ) (22)

’Vo+/—nd77 (23)

This gives the velocity vy = v(n),—0 and the contact angle u = 27/3 — Ao, where
Ao = )‘(77)77—>oo-

2.4. Determination of functions 3(£) and () on the body surface

The normal component of the velocity on the expanding body can be determined exploiting
the fact that the body surface Z, = Z,(5) is a given self-similar surface. By using the
self-similar variable z = Z/(Vt) we can write Z, = Viz(s), and the slope of the body
0(S) = 0p(s) = arg(dzy/ds). With notation in (8) and using ds/dt|s = —s/t, we obtain

7 7 . ,
AW = V:tdw = VQt(Us + iv,)ds = %dZ Vt %?d = Vzt(fb — 6—151)5)6%51:0[3,

from which the normal component of the velocity on the body is obtained as
Un(s) = Im (Z,e®)). (24)

The tangential component of the velocity on the body can be determined with the notation

in (8):
dw dz dw ~
vs(£) = Re (d_d_) = Re (E uemw) ’ (25)

S(f)z/d—g,f—/dz

d¢

is the arc length coordinate along the body with its origin at point A, and dz/d({ from (14)
is used.
By using (24), (25) and the definition of the function v(£)] we can obtain

o [ Im(z[s(€ )] “5”[5(“)
= tg ' 27
The angle &, between the unit vector 7 and x-axis is determined by the given shape of the
body which can be expressed through the angles § and . Taking the argument of (14) and
recall that §(§) = —arg(dw/dz)¢=¢ and A(§) = w(()¢=¢ = arg(dw/ds) we obtain 6, = § + 7,
from which the function () is obtained as

&) = 0[s(&)] = (&) (28)
The equations (27) and (28) allows us to determine the functions v(£) and S(&).

where

dg¢’ (26)
(=t
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2.5. The condition of flow detachment

According to the Brillouin—Villat criterion of flow detachment from shaped bodies, the cur-
vature of the free streamline should be equal to the curvature of the body at the point of
detachment. This criterion has been derived for steady flows (Brillouin [24], Villat [25]). We
show that this criterion is also valid to the determination of flow detachment for unsteady
flows.

We introduce the function 6(n) = 3(n)+0(n), which is the slope of the free surface. Here,
B(n) is the velocity direction on the free surface, which is obtained from (7) at { = i1 as

bt = —tm (10 ) -
(29)

/

n —
n+n

ﬁ:l%

arctan ndf + — / dlnv In
s dn’

1
2a 2
:—arctann+—/ ‘dn + Bo.
T m
0

On the free surface in (8) w({)c=iy = 0(n), therefore we can write dw/ds = ve®. On the
other hand, dw/ds = (dw/dz)(dz/ds) = edw/dz. Thus, we have the following relation:
dw

i0 i6
= . 30
ve 7€ (30)

By differentiating the left- and right-hand sides of the above equation with respect to s we
obtain

0 <dlnv _d@) _ 621-5612_?0 N wdw dé (31)

as s 2 T s

The term d?w/dz* on the right-hand side of the above equation is a bounded function because

the complex velocity given by (7) is the analytical function, which is finite at the point of

flow detachment. From the above equation it follows that the function |df/ds| < oo if the

curvature of the free surface is also bounded, |dd/ds| < oco.

The curvature of the free surface can be determined as k = dd/ds which at the detachment
point O is i
dﬁ

ko = lim (dﬁ + ds) lim ds + lim & (32)

s—0 \ ds n—0 98 s50ds’
dn

Differentiating (29) and taking into account that the leading order of ds/dn at point O

(n=0) is
ds KlT]

=~ 33
dn v(n) %)
where
2u_ d7
Ki=Kb* 2exp | —= l§d§—|— —lnndn ,
we obtain
1
20 1 1 '
om0 (2 e 2 Pt ) 4
n—0 K177 T 1+772 df 52‘|‘77 ™ d?’]/ 77,2_772 ds 5=0
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From (34) it follows, that the curvature of the free surface takes a finite value if the expression
in the parenthesis tends to zero as n — 0. In other case, the curvature becomes infinite that
leads to the intersection of the body and the free surface. Thus, the following condition is

obtained,
1
dgd 1 [dnvdy
/_/3_5__/ e/ N} (35)
w) d¢ & o« dn 7 7
0 0

from which the position of the point of flow detachment, which affects the function d5/d¢ =
(dB/ds) x (ds/d§) is determined.

In order to evaluate the curvature of the free surface at point O (n — 0), we differentiate
the numerator and denominator of (34) to resolve its indeterminate, then obtain

) de
o=Z
dSs:O
1 dl 20 1 2 1dﬁ £de 2 1dl 'd€
. nuv a nv mn
1 _ - - [ = S
T K, dn 7r1+7]2+ /d££2+n W/ dn' n'* —n? TG0
1 1
L2 (20 1 +z/@ _z/
Ky \ m (1+9?)? = d§(£2+n ) dy ( )2
0 0

The first term in the above equation equals zero due to (35). In order to evaluate the second
term containing the singular integrals, we have to estimate the leading order of the functions
dlnv/dn at n — 0 and df/d¢ at & — 0:

dlnv _ dlnwv ds ~ it £>0. (37)
dn n—0 ds s—0 d77 n—0
d _d d do d d d K
sl _dB| ds (_b _ D )_8 N<ﬁb__v >_1§, (38)
dg £—0 Cds 5—0 df £—0 ds 50 ds 50 dg =0 ds s—0/ Y0

where K, = —(ddy/ds)s—o is the curvature of the body at the point of flow detachment.
By substituting the estimates (37) and (38) of the functions d1Inwv/dn and df/d¢ into the
corresponding integrals in (36) and taking into account that

. n/2+adn/ B . 5,2d§/ B T
o) e = R @ er %)
0 0

we can find that the curvature of the free surface at the point of flow separation is equal to
the curvature of the body, i.e.,

dy de
RO = Rp — —/—

- = 40
ds |, s b (40)

s=0

where (dvy/ds)s—o = (df/ds)s—o that follows from the definition of functions y(£) = w({)¢=¢
and 6(n) = w(C)¢=in-
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The system of integral equations (18), (21), (27), (28) lets us to determine the unknown
functions 0(n), v(n), v(§) and B(£), and (35) determines the position of flow detachment.
Once these functions are found, the free surface and the velocity field can be determined
through the government expressions (7), (12)—(14).

The pressure coefficient ¢, based on the ambient pressure, P,, and normalized by pV?/2
where p is the liquid density, can be evaluated in the same way as for the self-similar problem
of impact between two liquid wedges (Semenov, Wu, Oliver [15]). By choosing the location of
the reference point in Bernoulli equation at the stagnation point A and taking the advantage
of self-similarity, we can determine the pressure coefficient at any point of the flow region

using
2

. 2(P— Py dw dw
Then, the pressure coefficient based on the ambient pressure, P,, is determined as follows:
2(P - Pa) * *
cp(§) = T cp(§) — (&) e=o- (42)

3. RESULTS AND DISCUSSION

The formulation of the problem and its solution derived in section 2 makes it possible
to consider arbitrary shaped bodies including a wedge of the half-angle «, that has been
studied by Semenov and Wu [26]. In this section we have presented results for a circular
cylindrical of radius R, which expands in time at constant speed Vy during its entry into
the liquid of infinite depth at constant vertical velocity V. The general solution contains the
free parameter b which determines the relative expansion speed u = Vz/V.

The solution procedure of the system of integral equations is similar to that in Semenov
and Wu [26], and it is based on the method of successive approximations. In discrete form,
the solution is sought on a fixed set of points {;, j = 1, ..., M distributed along the real axis
of the parameter region and on a fixed set of points 7;, 7 = 1,..., N distributed along the
imaginary axis. The intervals (n:,ny,) and (nn,,nn) correspond to the segments OB and
BD, respectively. The nodes n; are distributed as a geometric series with higher density near
the singular point 7y, = b corresponding to the tip of the splash jet. The integrand of (19)
determining the arc length coordinate has singularity | — b[#/™=! that requires to evaluate
the nodes sy,—1 and sy,11 nearest to point B analytically. Using (19) we obtain

TR
S{N— =F—F—
{N-1,N+1} :FWBT’“/”
1 [dy 1 [ d\ -
coxp =2 [ e+ )+~ [ Gl = Bl | I =0,
0 0

where vp = v(n),=p. It is seen that the smaller contact angle 4, the larger arc lengths of the
nodes sy,—; and sy, nearest to the tip of the splash jet (point B).

The angle of the splash jet is an important parameter because it influences the spatial
arc length coordinate starting at the tip of the jet. If we are able to obtain a good accuracy
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Tab. 1. Tip angle of the splash jet and the length of the node sy, 1 nearest to the tip
of the jet in the similarity plane referred to the length of the splash jet at b= 107,
The columns correspond to different intervals between the singular point 1y, = b
and the nearest node 7y, 1. The rows correspond to different numbers of nodes

/T SN,-1/508
| b—nn,—1 | N =100 | N =200 [ N =400 [| N =100 | N =200 | N = 400
10=° ] 0.000606 | 0.000567 [ 0.000547 [| 0.99764 | 0.99830 [ 0.99833
10=7 [ 0.000611 | 0.000569 | 0.000551 || 0.99518 | 0.99596 | 0.99604
10~ [0.000617 [ 0.000572 [ 0.000553 || 0.99230 | 0.99354 [ 0.99361

for the jet angle, then we can be sure that the accuracy for the other parameters is good
too. Tab. 1 gives the splash jet angle 1 and the of the arc lengths of the nodes sy,_; and
sn,+1 referred to the length of the splash jet between points O and B, spp, predicted for
b= 1075. It is seen that the arc length of the node sn,—1 1s about 99

The solution converges when both the number N — oo and the smallest interval A — 0.
At a fixed A the accuracy is increased with increasing N. The node distribution geometry
is such that for too small values of A the node density becomes higher near the singular
points and lower for the rest of the corresponding interval, which may decrease the overall
integration accuracy. The values A = 107%, N = 400 and M = 200 have been found
sufficiently to provide reasonable accuracy of results.

In Fig. 2 are shown the streamline patterns at different values of b, or the expansion speed
u. The wetted surface of the cylinder is shown by the thick line and non wetted surface is
shown by the dashed line. The slopes of the streamlines show the instant flow velocity
direction, and their density shows the velocity magnitude, since the flowrate between the
streamlines is constant. The higher density of the streamlines occurs near the core of the
splash jet. The tip angle of the splash jet is so small that lines corresponding to the sides
of the jet are overlaps. The zero streamline starting at the origin divides the inflow liquid
coming from infinity and the liquid displayed by the cylinder due to its expansion. In Fig. 2
it is also seen that the larger expansion speed, the larger length of the splash jet, while its
inclination to the z-axis becomes smaller. At the large expansion speeds, the length of the
splash jet becomes comparable with the length of the wetted part of the cylinder.

For the flow patterns shown in (Fig. 2b—e) the expansion speed gradually decreases. The
angle of flow detachment from the cylinder, J,, measured from the bottom point increases
for the expansion speeds in the range 0.8 < u < oo, and then it starts to decrease for further
decrease of the expansion speed in the rang 0 < v < 0.8. For the very small expansion speed
shown in (Fig. 2f) the angle §, approaches the value §, = 55° which is the angle of flow
detachment for the steady flow past a circular cylinder (Gurevich [23]). In this case, the
length of the free surface OB increases forming the cavity. The flow approaches the steady
free streamline flow past the cylinder of the fixed size. It is known that the half width of the
steady cavity, X,, tends to infinity at a rate of X, ~ InY. ~ In Vt. However, in the similarity
plane the coordinate z. = X./(Vt) ~ InVt/(Vt) — 0 as it seen in (Fig. 2f).

The drag force coefficient Cp is obtained by integration of the pressure along the wetted
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u=1.94
u=6.98

49 1.2 u=0.0487
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Fig. 2. The free surface shape and streamlines for different expansion speeds of a circular cylinder:
a—u=195b=10"%b—u=186,b=10"% c—u=10.01,b=5-10"%
d—u=194,b=10"2 e —u=0.837,b=0.1; f— u = 0.0487
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FIpV'R

Fig. 3. Impact force on an expanding circular cylinder entering water with constant velocity:
a — as a function of expansion velocity u, b — as a function of detachment angle dy;

solid lines — present predictions, dashed line — model of expansion flat plate,
dash-dotted line in a — ratio of the force coefficients corresponding to the expanding circle and flat plat,
dash-dotted line in b — expansion velocity

part of the cylinder:

Sa 1
2 1 ds
Cq = ,OVQRS/[P(S) — P,] cos 6,(5)dS = Eo/cp[s(g)} cos 5b[8(€)]d_§d£’ (44)

where R = Vut is the radius of the cylinder.

For comparison purposes we compute the drag force based on the Wagner’s slamming
model, which is based on the flat plate approximation of the shaped body. In this model
the flat plate links the core points of the splash jets on the left and right hand sides of the
body. The force predicted by Wagner model for the case of the constant entry speed can be
expressed analytically (Faltinsen [17]):

F= pwVL‘fl—f = pV2RCyp, (45)
where L the half length of the flat plate, and Cy, is the force coefficient. This equation is
obtained assuming that the local fluid accelerations much higher that convective term in the
Euler equation, or the term v?/2 in Bernoulli equation can be neglected. In the case of the
expanding circular cylinder, the half length of the equivalent flat plate is L = Rsindy =
Vitusindy (see Fig. la), and the angle of flow detachment ¢y is constant. We note that the
core point of the splash jet and the point of flow detachment are very close each other, as it
is seen in Fig. 2 at the large expansion speeds. By substituting L into above equation, we
obtain the coefficient of the drag force coefficient as

Cyp = musin® 6, (u). (46)

In Fig. 3 are shown the force predicted by the expanding circular cylinder and the ex-
panding flat plate models. It is seen in (Fig. 3a), that agreement between these models is
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quite good. The dash-dotted line in (Fig. 3a) shows the ratio of these force coefficients. This
ratio changes between 0.8 and 1.1 in the range of the expansion velocities 0.5 < u < 100.
For smaller expansion speeds, the force predicted the circular cylinder model becomes larger
than that based on the flat plate model. It is due to the fact that Cy, — 0 as u — 0 according
to (45), while the self-similar solution predicts the force corresponding to the steady flow
past the circular cylinder. The force coefficient as function of the angle of flow detachment
is shown in (Fig. 3b). A good agreement could be expected for large expansion velocities, or
for the cases corresponding to (Fig. 2a) and (Fig. 2b), for which the local deadrise angles are
relatively small. However, the same good agreement occurs for larger local deadrise angles
up to dg = 1.9 rad, or 110°. These results show that the model based on the flat plate
approximation of a shaped body can predict the force quite well if the point of intersection
of the free surface and the body has been determined precisely.

The expansion velocity u, the angle of flow detachment, dy, the tip angle of the splash
jet, p, and the drag coefficients, Cy and Cg,, for various values of the parameter b are shown
in Tab. 2. We note, that force coefficients Cq and Cy, about twice larger than that for a
cylinder of the fixed radius, R*, at small deadrise angles predicted by the Wagner’s model
(Oliver [27]). This difference shows the effect of flow history before time ¢t = R*/Vu at which
the radius of the expanding cylinder R = Vtu = R*.

The results in Tab. 2 show that for b — 0 the angle of the splash jet, i, tends to zero, and

Tab. 2. Main reference parameters for water-entry of an expanding circular cylinder
with detached splash jet. In the last line are shown the values corresponding
to the steady flow past a circular cylinder (Gurevich [23])

u b 50 ,u/7r Cd Cdp
108.78142 | 0.00001 | 0.193121 | 0.000550 | 14.0868 | 12.11771
41.55721 | 0.00005 | 0.31924 | 0.001414 | 13.7964 | 12.58802
27.65391 | 0.0001 | 0.39457 | 0.002131 | 13.2002 | 12.85957
10.99848 | 0.0005 | 0.64111 | 0.005596 | 11.1197 | 12.83803

7.01799 0.001 0.81758 | 0.009264 | 9.796 | 12.35972
4.10257 0.0025 | 1.08471 | 0.017411 | 7.9778 | 11.73287
2.78384 0.005 1.31627 | 0.027933 | 6.5717 | 10.0757
2.24591 0.0075 | 1.45413 | 0.036389 | 5.7907 | 8.191236
1.9481 0.01 1.54699 | 0.04310 | 5.2751 | 6.960128
1.42923 0.02 1.74132 | 0.063460 | 4.2287 | 6.116664
1.0313 0.05 1.90483 | 0.09384 | 3.2406 | 4.360752

0.8387 0.1 1.94022 | 0.12134 | 2.7027 | 2.89372
0.6899 0.2 1.87870 | 0.15255 | 2.2778 | 2.291327
0.5012 0.5 1.61454 | 0.20051 | 1.7345 | 1.968317
0.3230 1 1.32409 | 0.24315 | 1.2694 | 1.571554
0.1464 2 1.10389 | 0.28943 | 0.8814 | 0.954216
0.0477 4 1.00520 | 0.33597 | 0.6708 | 0.366741
0.0131 8 0.97289 | 0.37923 | 0.5761 | 0.106814
0 00 0.959931 - 0.4986
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the length of the splash jet increases. However, the flow configuration for b — 0 is different
from that for the case b = 0, for which points B and O coincides, and the singularity at
point B merges with zero at point O that results in singularity of order 2u/m — 1 at point

0.

4. CONCLUSIONS

Analytical self-similar solutions for water entry of an expanding shaped body with flow
detachment have been presented. The integral hodograph method has been employed to
derive the complex potential of the flow defined in the parameter plane and the mapping
function providing the relation between the similarity and parameter planes. Through the
method, the problem is reduced to a system of integral and integro-differential equations
after the dynamic and kinematic boundary conditions on the free surface and the body are
imposed. The Brillouin—Villat condition of flow detachment has been reconsidered for the
case of unsteady flows. It was shown that it keeps the same form as it is for steady flows.
The curvature of the free surface at the point of flow detachment has been derived and shown
that the Brillouin—Villat criterion of flow detachment is satisfied for unsteady flows too.

The solution of the problem includes a free parameter b whose choice determines the
expansion speed of the body and covers two limiting cases. For b — oo, the expansion speed
u = 0, thus the steady free-streamline Helmholtz flow past the shaped body with infinite
cavity is obtained as the special case. For b = 0 the solution describes the flow with the
splash jet attached to the body. The analysis of the obtained results and their comparisons
with that based on the simplified expanding flat plate model revealed that the difference
of the predicted force is less than 20% in the wide range of local deadrise angles from 0
to 110 degrees. At the same time the drag force predicted by the model of the expanding
circular cylinder is about twice larger than that corresponding to water impact of a circular
cylinder of the fixed size. This may occurs due to the different elevation of the free surfaces
corresponding to water entry of the expanding cylinder and that of a fixed size.
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FKO. M. CaBuenko, FO. A. Cemenon, O. I. HaymoBa
VYnaap 06 Boay MUJIIHAPUYHOIO TiJjia, M0 PO3HINPIOETHCS

Ha ocnosi Teopil moTenia Iy HECTHCIUBOI IIBUIKOCTI TEOPETHIHO BUBYEHO ABTOMO/IETb-
HU#l TTOTIK 3 GPU3KOBUM CTPYMEHEM, AKHUIl YTBOPEHO BHAC/IJIOK BXOJIY y BOJIY JIBOBH-
MipHOro Tija J0BiABHOI POpPMHU, IO PO3IMIUPIOETHCsI. [I0TiK BBaXkaBCst OE3BUXPOBUM, a,
piinHa — imea/bHOIO, T'PaBiTallisi 1 TOBEPXHEBUI HATST HE BPAXOBYBAJUCh. P03B’I30K
OTPUMAHO Y BUIJIS/Il IHTErpaJIbHUX PIBHAHb 3 BUKOPUCTAHHSAM IHTETPAJBHOIO METOILY
rojorpada. Ilokazano, 1o po3B’s30K 3 Bij'eqHaHUM OPU3KOBUM CTPYMEHEM ICHYE B
YCHOMY Jlialla30Hi IIBUKOCTEH PO3IMUPEHHs Bil HyJsd 10 HecKindernHocTi. 11pencrasie-
HO JOKJIAJIHI pe3yJIbTaTH 3 TOYKU 30pPY PO3MOILIY THUCKY, (POPMHU BLILHOI HMOBEPXHI i
JIiHI#T Tewil, KOHTAKTHOTO KyTa OPU3KOBOIO CTPYMEHH.

KJIFOYOBI CJIOBA: Bxix y Body, Tedist 3 BiJIbHOIO MOBEPXHEIO, OPH3KOBHI CTPYMIHb

FIO. H. CaBuyenko, FO. A. Cemenosn, E. 1. HaymoBa
Vaap o Boay pacHIMPSIOINErocs MUJINHIPUIECKOro TeJia

Ha ocnoBe Teopun norennuasia HECXKUMAEMON CKOPOCTU TEOPETUIECKH U3yUIEH aBTOMO-
JebHBIN MTOTOK C OpPBI3rOBOI CTpyeil, CO3MaBaeMOil BXOIOM B BOIY PACIIAPAIOIIETOCH
JBYMEPHOI'O TeJia NPOu3BOJIbHOM (opmbl. [loTok cumTaicss 6e3BUXPEBBIM, KUIKOCTD
ujieaIbHasd, TPABUTAIUS U [TOBEPXHOCTHOE HATsKEHHE He yIUThIBAJIUCh. Perenue mo-
JIVIEHO B BUJE WHTErPAJbHBIX YPABHEHUIl C HCIIOJbL30BAHUEM WHTErPAJILHOIO METO/IA
ronorpada. [lokazano, 9To perreHne ¢ OTCOeINHEHHOW OPBI3rOBO#l CTpyeil CyIecTByeT
BO BCEM JIMAIIA30HE PACIIUPEHUS CKOPOCTEeH OT HyJIst 10 beckoneunoctu. [IpencraBienbr
TOAPOOHDIE PE3Y/IbTAThI ¢ TOUKU 3PEHUs PACIIPEICJICHIS TaB/IeHus, (POPMbI CBOOOTHOM
[MOBEPXHOCTHU U JIMHUI TOKA, KOHTAKTHOT'O yIJia OpPBI3TOBOil CTPyH.

KJIFOYEBBIE CJIOBA: BXx01 B BOJLYy, TeUeHHe cO CBOOOIHOI MOBEPXHOCTHIO, OPBI3TOBAST
cTpyst

468



	INTRODUCTION
	FORMULATION OF THE PROBLEM AND THE SOLUTION METHODOLOGY
	Expression for the complex velocity dw/dz
	Expression for the derivative of the complex potential dw/d
	Determination of the functions v () and () on the free surface
	Determination of functions () and () on the body surface
	The condition of flow detachment

	RESULTS AND DISCUSSION
	CONCLUSIONS

