П.В.Лук'янов
Дифузія вихора в шарі стійко стратифікованої рідини

Прикладна гідромеханіка, Том 8 (80) № 3, (2006) с.63-77
Стаття мiстить аналiтичний розв'язок задачi турбулентної дифузiї квазiгоризонтального iзольованого вiсесиметричного вихора. Квазiгоризонтальнiсть обумовлює малiсть вертикальної компоненти швидкостi, а повiльний рух у часi - малiсть радiальної компоненти. Ситуацiї, коли це припущення порушується, обговеренi у роздiлi про другоряднi течiї. На пiдставi зроблених припущень задача зводиться до одного лiнiйного рiвняння дифузiї для вертикальной компоненти завихренностi з рiзними горизонтальною та вертикальною дифузiями. Вертикальна дифузiя вважається наближенно сталою [1], що є типовим для стiйкої стратифiкацiї. Горизонтальна дифузiя рахується за законом "чотирьох третин'' Рiчардсона, що наближенно виконується для горизонтальних масштабiв вихорiв у дiапазонi 10-1000 м [2, 3]. Граничнi умови задачi стандартнi. Граничнi умови на вiльнiй поверхнi можна формулювати на поверхнi незбуреного шара рiдини, так як показано, що величина викривлення вiльної поверхнi є дуже малою у порiвняннi iз товщiною шару рiдини. За радiальною координатою використовується розподiл у виглядi iзольованого гауссiану [4-6]. Повний розв'язок лiнiйної задачи дозволяє вiдокремити процес горизонтальної дифузiї, для якого знайдено автомодельний розв'язок. Вiн, для даного радiального розподiлу, вiдповiдає умовi збереження третього моменту завихреностi. Показано, що лiнiйна модель справедлива, якщо число Фруда значно менше за 1.
КЛЮЧОВI СЛОВА:
***
МОВА ТЕКСТУ: російська