Г.Ф.Золотенко
Многозначные решения общей задачи теории относительного движения жидкости

Прикладная гидромеханика, Том 8 (80) № 1, (2006) с.22-30
Исходная общая задача теории относительного движения жидкости в виде уравнения Лапласа с граничными и начальными условиями переформулирована как начально-краевая задача для системы двух уравнений, состоящей из уравнения Лагранжа-Коши и уравнения Лапласа. Установлена гиперболичность уравнения Лагранжа-Коши для квазипотенциала относительной скорости жидкости. Показано, что свободная поверхность жидкости является характеристикой этой формы уравнения Лагранжа-Коши. Доказана возможность существования многозначных решений рассматриваемой задачи и приведен пример такого решения (задача о "летящем цилиндре''). Сформулированы условия совместности данных Коши на свободной поверхности жидкости как на характеристике.
КЛЮЧЕВЫЕ СЛОВА:
***
ЯЗЫК ТЕКСТА: русский