В.A.Ткаченко, В.В.Яковлев
Нелинейно-дисперсионная модель трансформации поверхностных волн в прибрежной зоне моря, покрытой льдом

Прикладная гидромеханика, Том 1 (73) № 3, (1999) с.55-64
Построена длинноволновая нелинейно-дисперсионная модель, описывающая распространение изгибно-гравитационных волн в упругой пластине, плавающей на поверхности жидкости переменной глубины. Модель учитывает эффекты нелинейной дисперсии жидкости, а также инерцию, упругость и геометрически нелинейный прогиб пластины. Исходя из полученных уравнений, построена иерархическая последовательность более простых моделей, обобщающих известные из теории поверхностных волн уравнения Перегрина, Буссинеска и Кортевeга-де Вриза на случай изгибно-гравитационных волн. В частном случае обобщенного уравнения Кортевега-де-Вриза построены и проанализированы точные решения, описывающие распространение солитонов и кноидальных волн в море, покрытом сплошным или битым льдом. Показано, что изгибно-гравитационные волны обладают некоторыми зеркальными свойствами по сравнению с длинными нелинейными волнами на воде. Относительно солитона это означает, что без изменения формы распространяется впадина, а не горб, как в случае чистой воды, и скорость ее распространения с ростом амплитуды уменьшается, а не увеличивается. Кроме того, характеристики изгибно-гравитационных волн определяются амплитудой и дисперсией изгибной жесткости пластины и не зависят от дисперсии воды и инерционных свойств ледяного покрова.
КЛЮЧЕВЫЕ СЛОВА:
***
ЯЗЫК ТЕКСТА: русский