УДК 532.528

ПУЛЬСАЦИИ ВЕНТИЛИРУЕМЫХ КАВЕРН ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ЗАМЫКАНИЯ

B. H. CEMEHEHKO

Институт гидромеханики НАН Украины, Киев

Полученоно 04.07.2011

Численно исследуются нелинейные автоколебания (пульсации), возникающие при потере устойчивости вентилируемых каверн при замыкании на цилиндрическом теле и при свободном замыкании. Показано, что при учете непрерывного уноса газа из каверны возможно установление как разрывных, так и неразрывных автоколебаний. Дан анализ влияния на частоту и амплитуду автоколебаний диаметра тела, степени загромождения каверны телом и других параметров. Предлагается универсальная степенная зависимость, аппроксимирующая известные законы уноса газа из каверн при свободном замыкании. На ее основе обсуждается вопрос о влиянии закона уноса газа на устойчивость каверн.

Чисельно досліджуються нелінійні автоколивання (пульсації), які виникають при втраті стійгості вентильованих каверн при замиканні на циліндричному тілі і при вільному замиканні. Показано, що при урахуванні безперервного виносу газу з каверни можливе встановлення як розривних, так і нерозривних автоколивань. Дано аналіз впливу на частоту і амплітуду автоколивань діаметру тілу, ступено заповнення каверни тілом і інших параметрів. Пропонується універсальна степенева залежність, яка апроксимує відомі закони виносу газу з вентильованих каверн при вільному замиканні. На її основі обговорюється питання про вплив закону виносу газу на стійкість каверн.

Nonlinear self-induced oscillation (pulsation) arising after loss of stability of ventilated cavities closing on a cylindrical body or at the free closure is numerically investigated. It is shown that both discontinuous and continuous self-induced oscillation are possible at taking into account the permanent gas-loss from cavity. An analysis of influence of the body diameter, the cavity blocking-up by a body and other factors on the oscillation frequency and amplitude is given. An universal power law approximating the known laws of gas-loss from ventilated cavities at the free closure is proposed. Using this, the problem on the gas-loss law influence onto the cavity stability is considered.

введение

В работе [1] рассмотрена задача об устойчивости вентилируемой осесимметричной каверны при замыкании на цилиндрическом теле. Постановка задачи вызвана практической необходимостью исследования динамического поведения подводных суперкавитирующих (СК) аппаратов, обтекаемых в режиме частичной кавитации. Устойчивость каверн исследовалась в рамках теории Э.В.Парышева [2], базирующейся на принципе независимости расширения сечений нестационарной суперкаверны Г.В.Логвиновича [3].

В данной работе проводится численный анализ возникающих после потери устойчивости нелинейных автоколебаний (пульсаций) вентилируемых каверн. В случае свободного замыкания каверны такие пульсации впервые численно моделировались Э.В.Парышевым [4]. Исследуется характер влияния на динамику вентилируемых каверн таких факторов, как замыкание каверны на корпусе СК-аппарата и загромождения каверны корпусом СК-аппарата. При расчетах используется численно-аналитический метод, описанный в работе [5].

Предварительно с более общих позиций, чем в [2,5], рассмотрен вопрос о влиянии закона уноса

газа на устойчивость вентилируемых каверн при свободном замыкании. С этой целью предлагается универсальная степенная зависимость коэффициента расхода газа от числа кавитации, аппроксимирующая известные законы уноса газа.

В данной работе, как и в [1], используется модель "чистой" нестационарной суперкаверны. При малых σ для суперкаверны за затупленным кавитатором справедливы формулы Гарабедяна [6]:

$$D_c = D_n \sqrt{\frac{c_x}{\sigma}}, \qquad L_c = D_n \frac{A\sqrt{c_x}}{\sigma}, \qquad (1)$$

где D_c и L_c — наибольший диаметр и длина каверны соответственно; D_n и c_x — диаметр и коэффициент сопротивления кавитатора; $A = \sqrt{\ln(1/\sigma)}$. Модель "чистой" суперкаверны получаем, переходя к пределу $D_n/D_c \rightarrow 0$ и относя все линейные переменные задачи к длине каверны L_c . Если каверна замыкается на цилиндрическом теле диаметром $D_b < D_c$, то ее безразмерная длина будет [1]

$$l_b = \frac{1 + \sqrt{1 - \overline{D}_b^2}}{2}, \qquad \overline{D}_b = \frac{D_b}{D_c}.$$

В данной постановке задача содержит два физических параметра:

$$\sigma = \frac{2(p_{\infty} - p_c)}{\rho V_{\infty}^2}, \qquad \beta = \frac{\sigma_v}{\sigma} > 1,$$

© В. Н. Семененко, 2011

где σ — число кавитации; p_{∞} — давление в невозмущенной жидкости; p_c — давление в каверне; σ_v — паровое число кавитации при $p_c = p_v$. Еще два параметра задают относительный диаметр тела $\overline{D}_b = D_b/D_c$ и степень загромождения каверны телом $\overline{Q}_b = Q_b/Q_c$. Поскольку в качестве масштаба длины выбрана длина каверны при свободном замыкании L_c , то коэффициенты расходов газа определим в виде

$$\dot{q}_{in} = \frac{\dot{Q}_{in}}{V_{\infty}L_c^2}, \qquad \dot{q}_{out} = \frac{\dot{Q}_{out}}{V_{\infty}L_c^2}, \qquad (2)$$

где Q_{in}, Q_{out} — объемные расходы поддува газа в каверну и уноса из каверны при давлении p_c .

1. ДИНАМИЧЕСКАЯ СИСТЕМА

Нестационарное поведение "чистой" осесимметричной суперкаверны, замыкающейся на цилиндрическом теле, при заданных переменном поддуве газа $\dot{q}_{in}(t)$ и возмущении давления в воде $p_1(t)$ описывается системой функциональных уравнений [1,5]

$$\overline{S}(\tau,t) = t - \tau - 2 \int_{\tau}^{t} (t-u) \left[\overline{\sigma}(u) + \overline{p}_1(u)\right] du, \quad (3)$$

$$\overline{S}(t-l, t) = \frac{\overline{D}_b^2}{4}, \tag{4}$$

$$\frac{d}{dt} \left[\left(\beta - \overline{\sigma}(t) \right) \left(Q_c(t) - Q_b(t) \right) \right] = \\ = \left(\beta - 1 \right) \left[\dot{q}_{in}(t) - \dot{q}_{out}(t) \right], \tag{5}$$

$$\overline{Q}_{c}(t) = \int_{t-l(t)}^{c} \overline{S}(\tau, t) d\tau, \qquad (6$$

$$\overline{Q}_b(t) = \overline{Q}_{b0}\overline{Q}_{c0} + \frac{\overline{D}_b^2}{4}\left[l(t) - l_b\right],$$

где $S = \pi D_c^2 \overline{S}$ — площадь текущего сечения каверны; $t - l(t) \leq \tau \leq t$ — момент образования сечения; l(t) — длина каверны; $\overline{\sigma} = \sigma(t)/\sigma_0$; $\overline{p}_1 = p_1/\sigma_0$; $Q_c = \pi D_c^2 \overline{Q}_c$ — объем каверны; $Q_b = \pi D_c^2 \overline{Q}_b$ — объем каверны, занятый телом.

Рассмотрим систему нелинейных уравнений (3)—(6) как динамическую систему с тремя фазовыми переменными l(t), $\overline{\sigma}(t)$ и $\overline{Q}_c(t)$. Она имеет стационарную точку

$$\overline{\sigma} = 1, \quad l = l_b, \quad \overline{Q}_c = \frac{1}{4} l_b \overline{D}_b^2 - \frac{1}{2} l_b^2 + \frac{2}{3} l_b^3,$$

В. Н. Семененко

Рис. 1. Схема нестационарной каверны, замыкающейся на цилиндрическом теле

которая является решением системы при $p_1 = 0$, $\dot{q}_{in} = \dot{q}_{out}$. В работе [1] показано, что это решение обычно асимптотически устойчиво при $1 < \beta < \beta_{cr}$ и неустойчиво при $\beta > \beta_{cr}$. Величина β_{cr} возрастает с увеличением диаметра тела и уменьшается с ростом загромождения каверны телом.

После потери устойчивости в системе развиваются нелинейные автоколебания, спектральный состав и амплитуда которых зависят от параметров β и \dot{q}_{in} (см. [4,5]). Вследствие колебаний давления в каверне граница каверны приобретает волнообразную форму, результатом чего может быть разрывный характер функции l(t) [4,5]. В момент касания границ каверны и тела $t = t_1$ условию замыкания каверны (3) может формально удовлетворять одно, два или несколько значений функции $l(t_1) \ 0 < l_1(t_1) < l_2(t_1) < \dots$ (см. рис. 1). Очевидно, физический смысл имеет наименьшее из них. При расчете считается, что в момент t_1 происходит скачок функции l(t) от значения l_2 к значению Соответствующий скачок испытывает и объем каверны $Q_c(t)$, в то время как функция $\overline{\sigma}(t)$ изменяется непрерывно.

Заметим, что на практике при уменьшении местного зазора между поверхностью тела и границей каверны могут проявляться эффекты, связанные с увеличением скорости течения вдуваемого в каверну газа. В данной модельной постановке эти эффекты не учитываются.

Автоколебания вентилируемых каверн, рассчитанные при избыточном поддуве газа, обычно являются разрывными [4,5]. Ниже показано, что при учете непрерывного уноса газа возможны и неразрывные колебания каверны. При этом все три функции l(t), $\overline{\sigma}(t)$ и $Q_c(t)$ являются непрерывными и непрерывно дифференцируемыми функциями времени. В этом случае путем замены переменных в интегралах (3), (6) $\theta = (t - u)/l(t)$ и последующего дифференцирования уравнений (3), (6) по времени систему (3)—(6) можно свести к системе обыкновенных дифференциальных уравнений первого порядка, правые части которых не содержат интегралов

$$\dot{\varphi} = \frac{2l(1-\varphi)^2 \overline{\sigma}(t-l) + 2(1-\varphi^2)\overline{\sigma}(t-l) - 2\overline{\sigma}}{2l\overline{\sigma}(t-l) - 1},\tag{7}$$

$$\dot{l} = \varphi, \qquad (8)$$

$$\cdot \quad (\beta - \overline{\sigma})(\overline{\dot{Q}}_{c} - \frac{\overline{D}_{b}^{2}}{2}\varphi) - (\beta - 1)(\dot{q}_{in} - \dot{q}_{out}) \qquad (8)$$

$$\frac{1}{\overline{\sigma}} = \frac{(\beta - \sigma)(\overline{q_c} - 4\phi)(\beta - 1)(\overline{q_{in}} - \overline{q_{out}})}{\overline{Q_c} - \overline{Q_b}}, \quad (9)$$

$$\dot{\overline{Q}}_c = \left(l - \frac{\overline{D}_b^2}{4}\right)(2 - \varphi) - 2l^2(1 - \varphi)\overline{\sigma}(t - l).$$
(10)

Система уравнений с запаздывающим аргументом (7)—(10) удобна для численного интегрирования методом Рунге-Кутта при начальных условиях

$$\varphi = 0, \quad l = l_b, \quad \overline{\sigma} = 1, \quad Q_c = Q_{c0}$$
 при $t \le 0.$

Заметим, что в принципе система уравнений (7)—(10) может использоваться и для расчета разрывных решений. Однако она не содержит условия для определения моментов и величин скачков функции l(t). Для этого на каждом шаге необходимо рассчитывать контур каверны по формуле (3). Дополнительная трудность состоит в том, что производная \dot{l} бесконечна в точках разрыва. Поэтому для расчета разрывных решений естественней использовать систему функциональных уравнений (3)—(6). В работе [5] разработан эффективный безитерационный алгоритм ее численного решения.

2. ЗАКОНЫ УНОСА ГАЗА ИЗ ВЕНТИЛИРУЕМЫХ КАВЕРН

Основные механизмы и законы уноса газа при свободном замыкании вентилируемых каверн в зависимости от числа кавитации σ и числа Фруда $Fr = V_{\infty}/\sqrt{gD_n}$ были установлены Г.В.Логвиновичем и Л.А.Эпштейном [3, 7] (см. также обзор [8]). Главным фактором, определяющим механизм уноса газа из каверны при свободном замыкании, является влияние весомости. В.Н.Буйвол теоретически показал, что для оценки влияния весомости можно использавать параметр $\nu = \sigma \sqrt{\sigma} F r^2$ [9]. При $\nu < 1,5$ влияние весомости является существенным, в этом случае реализуется унос газа по двум вихревым шнурам. Для такого типа уноса для дискового кавитатора в определенном диапазоне чисел σ и Fr Л.А.Эпштейном получено эмпирическое соотношение [7]

$$\dot{Q}_{out} = V_{\infty} D_n^2 \frac{0,27}{\sigma(\nu^2 - 2)}.$$
 (11)

При слабом влиянии весомости ($\nu > 1, 5$) реализуется так называемый порционный унос газа, обусловленный периодичесеким возникновением и разрушением возвратной струйки в хвостовой части каверны. Для этого случая Спурком предложена аппроксимационная формула [10]

$$\dot{Q}_{out} = C_f V_{\infty} D_c L_c = C_f V_{\infty} \frac{A D_n^2 c_x}{\sigma \sqrt{\sigma}}, \qquad (12)$$

где $C_f \approx 0,013$ — эмпирический коэффициент. Хорошо известна также полуэмпирическая формула, полученная Г.В.Логвиновичем для суперкаверн, близких к паровым [3]:

$$\dot{Q}_{out} = \gamma V_{\infty} S_c \left(\frac{\sigma_v}{\sigma} - 1\right), \qquad (13)$$

где $\gamma\approx 0,01-$ эмпирический коэффициент; $S_c=\pi D_c^2/4-$ площадь миделевого сечения каверны.

Как видим, все известные законы уноса газа из вентилируемой каверны при свободном замыкании дают степенной характер уменьшения расхода газа при росте числа кавитации σ , отличаясь показателями степени. Это обстоятельство делает целесообразным ввести универсальную степенную зависимость для расхода газа из каверны:

$$\dot{Q}_{out} = V_{\infty} D_n^2 C \sigma^{\eta}, \qquad \eta < 0, \tag{14}$$

где C-безразмерный коэффициент, который может зависеть от $Fr,\,\nu,\,\sigma_0,\,\beta$ и других параметров.

В нестационарном случае будем использовать квазистационарный закон (14), полагая в нем $\sigma = \sigma(t)$. Это равносильно допущению о том, что время запаздывания реакции механизма уноса газа на изменение давления в каверне мало по сравнению с характерным периодом колебаний. Опыт показывает, что это допущение является оправданным для не слишком высоких частот колебаний каверны.

В случае замыкания каверны на цилиндрическом теле будем пользоваться полуэмпирическим соотношением [1]

$$\dot{Q}_{out} = C_b V_\infty D_c L_c l_b \left(1 - \frac{D_b^2}{D_c^2} \right), \qquad (15)$$

где C_b — эмпирический коэффициент. При этом коэффициент расхода газа из каверны (2) в нестационарном случае будет

$$\dot{q}_{out}(t) = \frac{C_b \sqrt{\sigma_0}}{A^2 c_x} \frac{l(t)}{\overline{\sigma}(t) \sqrt{\overline{\sigma}(t)}} \left(1 - \overline{D}_b^2 \overline{\sigma}(t)\right).$$

В. Н. Семененко

3. ВЛИЯНИЕ ЗАКОНА УНОСА ГАЗА НА УСТОЙЧИВОСТЬ КАВЕРНЫ ПРИ СВОБОДНОМ ЗАМЫКАНИИ

В работе [2] Э.В.Парышев показал, что влияние непрерывного уноса газа по законам (11) и (13) на устойчивость вентилируемых каверн имеет демпфирующий характер.

С целью количественного анализа влияния закона уноса газа рассмотрим задачу об устойчивости вентилируемой каверны при свободном замыкании, используя универсальный закон (14). В этом случае динамическая система имеет стационарную точку $\overline{\sigma} = 1$, l = 1, $\overline{Q}_c = 1/6$. Полагая в уравнениях (3)—(6) $\overline{p}_1 = 0$, $\overline{D}_b = 0$, линеаризуя уравнения и выполняя те же преобразования, что в [1], получим характеристическое уравнение

$$\frac{a\mu^3}{\beta - 1} + b\mu^2 + 2\left[\mu(e^{-\mu} + 1) + 2(e^{-\mu} - 1)\right] = 0, (16)$$

rge $\mu = \lambda + jk; \quad a = \frac{1 - \overline{Q}_b}{6}; \quad b = -\frac{C\eta\sigma_0^{\eta+1}}{\pi c_x}.$

Далее удобно изучать свойства решений уравнения (16) в зависимости от неотрицательного параметра b. Значение b = 0 соответствует теоретически допустимому случаю постоянства массы газа в каверне. При этом уравнение (16) имеет бесконечную серию чисто мнимых корней (т.е. частот нейтральных колебаний)

$$k_n = 2\pi n$$
 при $\beta_n = 1 + a(\pi n)^2$, $n = 1, 2, ...$

При 0 < b < 0,2036 уравнение (16) имеет конечные серии чисто мнимых корней, причем их количество уменьшается с ростом *b*. При b > 0,2036 каверна асмптотически устойчива при любых β .

На рис. 2, *a*, *б* приведены графики зависимости параметра β_n и соответствующих значений приведенной частоты k_n от *b* при $\lambda = 0$ и $\overline{Q}_b = 0$. При переходе через каждую из кривых $\beta = \beta_n(b)$ на рис. 2, *a* снизу или сверху возбуждается *n*ая колебательная мода. Для каждой моды существует максимально возможное значение параметра $b = b_{max}$. Точные значения b_{max} для первых четырех мод приведены в таблице 1.

Табл 1. Значения параметра b_{max} для первых четырех мод колебаний каверны

n	1	2	3	4
b_{max}	0,2036	0,1240	0,0892	0,0697

Практическое значение имеет наименьшее значение параметра $\beta_1 = \beta_{cr}$. При переходе через β_{cr}

В. Н. Семененко

Рис. 2. Области неустойчивости каверны на плоскостях (b, β) (a) и (b, k) (b)

снизу в системе развиваются периодические автоколебания 1-ой моды — предельный цикл. Ниже показано, что эти колебания могут быть как разрывными, так и неразрывными.

Представляет практический интерес характер влияния степени загромождения каверны корпусом СК-аппарата \overline{Q}_b на устойчивость каверны. На рис. 3 приведены графики зависимости β_{cr} от \overline{Q}_b , рассчитанные для ряда значений параметра b. Приведенная частота нейтральных колебаний k_1 не зависит от \overline{Q}_b . Легко показать, однако, что размерная частота колебаний (в Гц) будет расти при увеличении \overline{Q}_b . Такой же характер влияния параметра \overline{Q}_b на устойчивость сохраняется в случае частичных каверн [1].

Полученные результаты позволяют делать заключение об устойчивости вентилируемых каверн для конкретных законов уноса газа. Например, для закона уноса (11) имеем $C = 0,27/(\nu^2 - 2),$ $\eta = -1$, следовательно, $b = 0,105/(\nu^2 - 2)$. В силу критерия В.Н.Буйвола [9] унос газа по вихревым трубкам реализуется при $\nu < 1, 5$, откуда имеем b > 0.47. Однако, как следует из таблицы 1, каверна может терять устойчивость только при

Рис. 3. Влияние степени загромождения каверны телом на β_{cr}

b < 0, 2036. Отсюда заключаем, что при уносе газа по вихревым трубкам каверна всегда устойчива.

Для закона уноса (12) и $\sigma_0 = 0,02$ имеем $C = 0,0211, \quad \eta = -1,5,$ следовательно, b = 0,0868. С помощью таблицы 1 заключаем, что в этом случае возможна потеря устойчивости каверны и развитие автоколебаний первых трех мод. Численные расчеты подтверждают сделанные выводы.

4. НЕЛИНЕЙНЫЕ ПУЛЬСАЦИИ ВЕНТИЛИРУЕМЫХ КАВЕРН

Ниже приводятся результаты расчета пульсаций вентилируемых каверн при различных условиях замыкания каверны и различных законах уноса газа. При этом ограничиваемся анализом 1-ой моды автоколебаний, возникающей при $\beta_1 < \beta < \beta_2$. Кроме β , частота и амплитуда автоколебаний определяются параметром \dot{q}_{in} , т.е. величиной начального избыточного поддува газа.

На рис. 4, *а* показан трехмерный фазовый портрет разрывных автоколебаний частичной вентилируемой каверны. Для наглядности вместо $\overline{\sigma}$ нанесена величина безразмерного давления в каверне $p_c = \sigma_0(\beta - \overline{\sigma})$. Параметры расчета: $\overline{D}_b = 0, 5;$ $\overline{Q}_b = 0, 4; \quad \beta = 5, 0; \quad \dot{q}_{in} = 0, 1; \quad C_b = 0,0088.$ На рис. 4, δ показан фазовый портрет неразрывных автоколебаний каверны при свободном замыкании и законе уноса газа (12). Параметры расчета: $\overline{Q}_b = 0, 4; \quad \sigma_0 = 0, 02; \quad \beta = 3, 0; \quad \dot{q}_{in} = 0, 1.$

На рис. 5, *a*, *б* приведены графики зависимости приведенной частоты *k* 1-ой моды автоколебаний частичной каверны и размаха колебаний длины каверны $\Delta l = l_{max} - l_{min}$ от относительного диаметра тела \overline{D}_b при различных значениях степени загромождения каверны телом \overline{Q}_b . Параметры

Рис. 4. Предельные циклы в фазовом пространстве (l, p_c, Q_c) : a – разрывный; δ – неразрывный

расчета: $\beta = 3,0; \dot{q}_{in} = 0,1; C_b = 0,0088.$ При возрастании \overline{D}_b от 0,1 до 0,8 начальный коэффициент уноса \dot{q}_{out} уменьшается от 0,0391 до 0,0114. Как видно, размах колебаний длины каверны возрастает с ростом \overline{D}_b и убывает с ростом \overline{Q}_b . Размах колебаний давления в каверне Δp_c , наоборот, убывает с ростом \overline{D}_b и возрастает с ростом \overline{Q}_b .

Графики на рис. 6 показывают, как зависят параметры k, Δl и Δp_c от расхода газа, вдуваемого в каверну, при свободном замыкании каверны и законе уноса (13). Параметры расчета: $\overline{Q}_b = 0$; $\sigma_0 = 0,02$; $\beta = 3,0$. В этом случае начальный коэффициент уноса $\dot{q}_{out} = 0,005$. При равновесном поддуве устанавливаются неразрывные, а при $\dot{q}_{in} > 0,005$ – разрывные автоколебания.

В целом расчеты показали, что неразрывные автоколебания вентилируемых каверн устанавливаются только при относительно небольших значениях $\beta > \beta_{cr}$ и значениях \dot{q}_{in} , близких к равновесному. При увеличении каждого из параметров β , \dot{q}_{in} они быстро становятся разрывными.

Рис. 5. Зависимость приведенной частоты (a)и размаха колебаний длины каверны (b) от \overline{D}_b

выводы

В работе численно исследованы нелинейные автоколебания (пульсации), возникающие при потере устойчивости вентилируемых каверн при замыкании на цилиндрическом теле и при свободном замыкании. Показано, что при учете непрерывного уноса газа из каверны возможно возникновение как разрывных, так и неразрывных автоколебаний каверны. В последнем случае динамическая система сведена к системе обыкновенных дифференциальных уравнений первого порядка с запаздывающим аргументом.

Предложена универсальная степенная зависимость уноса газа от числа кавитации, позволившая с общих позиций исследовать вопрос о влиянии закона уноса газа на устойчивость вентилируемых каверн при свободном замыкании.

В случае замыкания каверны на теле показано, что увеличение диаметра тела ведет к уменышению приведенной частоты 1-й моды автоколебаний, а возрастание степени загромождения каверны телом — к ее росту. Размах колебаний давления в каверне ведет себя так же, а размах колебаний

Рис. 6. Зависимость $k,\,\Delta l$ и
 Δp_c от коэффициента поддува газа \dot{q}_{in}

длины каверны — противоположным образом.

Учет непрерывного уноса газа из каверны является существенным при расчете потери устойчивости и неразрывных колебаний вентилируемых каверн. После установления разрывных автоколебаний основным становится механизм уноса газа, обусловленный периодическим отрывом и уносом больших порций каверны [8,11].

- Семененко В.Н. Неустойчивость вентилируемой каверны при замыкании на теле // Прикладна гідромеханіка.— 2011.— Т. 13, N 3.— С. 76-81.
- Парышев Э.В. Принцип независимости расширения каверны как метод исследования нестационарных кавитационных течений // Тр. ЦАГИ.– 1985.– Вып. 2256.– С. 43–50.
- Логвинович Г.В. Гидродинамика течений со свободными границами. – К.: Наук. думка, 1969. – 208 с.
- 4. Парышев Э.В. Численное моделирование пульсаций вентилируемых каверн // Тр. ЦАГИ.– 1985.– Вып. 2272.– С. 19–28.
- Семененко В.Н. Компьютерное моделирование пульсаций вентилируемых суперкаверн // Гидромеханика.– 1997.– Вып. 71.– С. 110–118.
- 6. Garabedian P.R. Calculation of axially symmetric cavities and jets // Pac. J. Math.– 1956.– Vol. 6, No. 4.– P. 611-684.
- 7. Эпштейн Л.А. Методы теории размерностей и подобия в задачах гидромеханики судов.– Л.: Судостроение, 1970.– 208 с.
- Semenenko V.N. Artificial cavitation. Physics and calculations. RTO-AVT/VKI Special Course on Supercavitating Flows. VKI, Brussels, Belgium.– 2001.
- 9. *Буйвол В.Н.* Тонкие каверны в течениях с возмущениями.– К.: Наук. думка, 1980.– 296 с.
- 10. Spurk J.H. On the gas loss from ventilated supercavities // Acta Mechanica. – 2002.– $\bf 155.$ – P. 125–135.
- Лапин В.М., Эпштейн Л.А. Об уносе газа, обусловленном пульсациями каверн // Уч. записки ЦАГИ.– 1984.– т. 15, № 3.– С. 23–30.