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In this paper we consider the one-dimensional convection (advection) dispersion equation of the transport theory of
heterogeneous reacting solutes in porous media. A wavelet solution is in the framework of multi-resolution analysis.

PaCCManI/IBaeTCH AUCIIEPCHUOHHOE YyPaBHCHUE OﬂHOMepHOI;I KOHBEKIINU (aﬂBeKLU/II/I) TECOPUU TPaHCIOPTa '€ TEPOr€HHBIX pea-
TUPYROONUX paCcTBOPEHHBIX BEIICCTB B IIOPUCTEIX Cpeaax. BenipneTHoe PEIIEHNE IIQINYYCHO B paMKaX MYJIbTUPESOIBEBEHTHOI'O

aHajlns3a.

Posrnagaerbesa Aicnepciiiie pIBHAHHA OAHOBUMIPHOI KOHBeKIil (aaBekuil) Teopil TpaHCIOPTY IeTEPOreHHUX pearylounx

POBYUMHEHNX PEYOBUH y IOPUCTUX CEpPEAOBUINAX.
aHaliBy.

INTRODUCTION

The transport theory of reacting solutes in a porous
medium is considered under the hypotheses that the
motion of solute transport i1s unidirectional, isother-
mal and devoid of instabilities; 1t takes place in a
heterogeneous porous medium and the content, the
density and the viscosity of the water in the medi-
um are constant during the process. Since we are
mainly interested in the chemical reaction equations
we assume that the physical parameters defining the
medium are unaffected by the transport, leaving the
size of the pores, their distribution in the solid (and
so on) unchanged. The chemical species defining the
solid are at rest (while the chemical species defin-
ing the solute are mobile) in the medium, so that
the mathematical model of the transport solution un-
der chemical reactions (source-free) is the following
algebraic-differential system [6](©, D, @ constants)
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(1)
also called the convection-dispersion system. Sys-
tem (1) is a differential and algebraic system in the
unknown #P functions ¢;(z,t), #P being the num-
ber of tenads [?] involved in the chemical reaction.
The algebraic equations (1)3 express the relationships
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among concentrations of reaction participants, to be
fulfilled irrespective of the contributions of the in-
dividual processes (both chemical and/or physical)
influencing the concentrations ¢;.

1. ONE DIMENSIONAL SOLUTE TRANSPORT
EQUATION

In a one-dimensional domain 2 C R let = be
the coordinate, I a finite interval of time ¢, (I =
{t:0<t<T, T<}). We consider a sufficient-
ly fast and reversible reaction of heterogeneous type
[6],where the medium’s original solution consists of
two reacting cations M;, M3 in equilibrium with a
cation exchanger ' M,. The displacing solution con-
tains a reacting cation Ay and a non-reacting anion
Ms. The transport affecting reaction is represent-
ed by the chemical reactions (for binary cation ex-
change)

M, + MsM, = Ms+ M M,.

There are four tenads in the system, three reacting
My, Ms, M, and one chemical non-reacting species
M. The basic equations (1) for the concentrations

! Dissolved in water and solid phase transport participants
are given symbols M and M, respectively.
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€1, ¢, Ca, c3, ¢35 are [6, p. 1237]
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with K3 a given constant. The e subscript, repre-
senting M,, has been dropped from the ¢ functions,
for them p is the anologous of © and represents the
porous medium’s bulk density (mass of the medium’s
solids/the medium’s volume). In the heterogeneous
reactions both the liquid and solid phases are involved
in the tenads. From (2)4 we get

(3)
since the exchange capacity does not vary with z.
Then it follows:

51—|—53:C

d
@a (Cl + 63) =L (Cl + 63)

that, with the change of variable u = ¢ 4¢3, becomes
the linear equation

Ou
@E = LU,

whose solution can be expressed in terms of wavelets
[2].Deriving the condition (2)s with respect to ¢ and
taking into account equation (3) we obtain from (2); 4
the following nonlinear system [6]:
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from which we obtain the non-linear equation
0? 0
asd = 1Y pl. gL
ot Ox? Ox
with a suitable constant a. In particular, we restrict
ourselves to the following one-dimensional initial-
boundary problem:

glg,

dg _ def . O? d B
E—ng, L_D@_Qﬁ_x’ (a=1)
u(z,0) =up(z), 0<ax<l1, t=0, (4)
u(0,) = 0, 2=0, 1>0,
u(1,t) =0, r=1, t>0
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and we assume as the initial function

1a $EA1,
up(z) =< —1, z€A_q,
0, $¢A1 UA_l,

Aldzef{x:0<x0§x§x1<l}
A_ldzef{x:0<x1§x§x2<1}

(5)

which corresponds to the realistic case of an impulse
function when |z — 2| — 0.

2. MULTI-RESOLUTION ANALYSIS IN HAAR
BASIS

The Haar scaling function ®} () = 22 (20 e —k)

has a compact support on the dyadic interval

ndef | B k41
Dk = |:2_n’ 2n )a

where its value is 1. The Haar family of wavelets

Vi) E Rt —b), o, (6)

is a complete orthonormal system for the Lo (R) func-
tions [5]

1, =ze€ ﬁ,k—i—l/Q
2 2

Vi) =4 L[R2 kel (7)
bl 2n bl 2n
0, elsewhere .

Let V,,, n € Z be the subspace of Ly(R) defined as
the set of the piecewise constant functions f(x) of
compact support on D7 ( n fixed) , and W, the
orthogonal subspace such that the axioms of multi—
resolution (or multiscale) analysis [4, 5]are fulfilled,

Ly(R)= @ Wn =V, &
nez

Vn+1 == Vn ©® Wn;

W;, qeZz
Jj>q

(8)

being ¢ the direct sum of orthogonal spaces. The set
of functions {¥}} (n € Z) represents an orthonormal
basis for L2(R).

Fixing the resolution value N < oo, in

(8), the

N
P wa,
n=0

L2(R) space is approximated by La(R) =

that is,

N
OEL AN ORENEDY
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Puc. 1. Haar-wavelet representation of the wave solution

being 7" a projection operator into V,y1, so that
" LZ(R) — Vn+1-
Choosing  a of  dyadic

ef Kk - .

= on (k=0,...,2" — 1) the dyadic discretiza-
tion is the operator V7 : La(R) — L2 (Z(27™)), with
L2 (Z(27")) C L2(R) being the set of La(R) func-
tions sampled at #j. The action of V" on f(z) is such
that V" f(z) = £” with £ = {fo, f1,..., fan—_1} and
{fk & (@) |p=zg, , 0 < kb <27 — 1}. The fast Haar-
wavelet transform M of £V is the linear operator [1,

4]

number nodes

Lk

H: Lo (Z(277) — Vi | £V = HEN =
n=0,..2Y-1
{abooe} ,
k=0,...n
where o, 87 are the wavelet coefficients.
According to the above definitions, the projection
operator 7" : L3(R) — Vp41 is factorized as 7" =
HV™.
A p-order Cardinal spline, is a C?=1([0, 1)) differ-

entiable operator

B (10)

def

S La(Z(27N)) — CcP72([0,1)) : £V s(z)
such that for the differential operator
L:Ly(Z2(27N)) — La(2(277V))

it 1s

LH =MHLS". (11)

There follows that, given the set £V and computed
the spline of a sufficiently large order, the spline—
derivative of HfY belongs to the same space of £V
[1, 4].

According to the above, using splines and wavelets
up to the resolution N, the approximate solution of
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SPEN 4.

the equation (4)is the vector u¥ (€ Vy41), ie. as-
suming the Euler formula for the time-derivative

N+1 N+1

NOu _
ot

u —u

At

we have from (4)
uVt = w4 AtL(HuN)
and, according to (11)

uV = (1 + AtHLS? ). (12)

With the boundary condition (5),time step At =
0.01, and assuming in (4); @ = D = 1 and in
3

(5)1‘0 == Za 8’

(t = 0.05) we obtain the evolving function of Fig.
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