УДК 581.1:631.4

НЕЛИМИТИРОВАННЫЙ ПРИТОК ПИТАТЕЛЬНЫХ ЭЛЕМЕНТОВ К СООБЩЕСТВАМ КОРНЕЙ

В. Л. ПОЛЯКОВ

Институт гидромеханики НАН Украины, Киев

Получено 15.06.98

Получено эффективное аналитическое решение задачи о неустановившемся нелимитированном притоке элементов питания вследствие их дисперсии, молекулярной диффузии и с массовым потоком к сообществам корней с учетом конкуренции последних. Обсуждается переход от структурной модели, описывающей динамику концентрации ионов в почвенном растворе на микроуровне, к модели биологической сплошной среды.

Одержаний эфективний аналітичний розв'язок задачі про несталий нелімітований приплив елементів живлення внаслідок їх дисперсії, молекулярної дифузії і з масовим потоком до сукупності коренів з врахуванням конкуренції останніх. Обговорюється перехід від структурної моделі, яка описує динаміку концентрації іонів в грунтовому розчині на мікрорівні, до моделі біологічного суцільного середовища.

An effective analytical solution to the unsteady natrient transport problem has been obtained taking into account soil buffer power, inter-root competition, dispersion of water velocity, molecular diffusion, mass flow toward a root. The transfer from the structural model, describing ion concentration dynamics in soil solution on microlevel to the model of biological continuous medium is discussed.

введение

Одним из факторов, определяющих продукционный процесс, является, как известно, содержание питательных элементов в почвенном растворе корнеобитаемой зоны. При этом количественная оценка интенсивности нарастания биомассы в принципе может быть получена в результате расчета потока в корни элементов питания даже одного типа, если известно их характерное количество, содержащееся в единице биомассы сухого вещества. Для расчета указанного потока с учетом локальных особенностей действия корней применяются специальные нестационарные модели, которые отражают основные закономерности формирования потока ионов к отдельным корням [1 – 4]. Такие модели использовались для анализа влияния корней на характеристики питательного режима, интенсивности поглощения ими ионов, исходя из известного распределения корней по зоне их обитания и кинетики Михаэлиса-Ментен для процесса поглощения. В то же время физико-химические, микробиологические процессы, обуславливающие трансформацию и миграцию азотных соединений в вертикальном направлении, обычно описываются на макроуровне в рамках моделей биологической сплошной среды, которые доказали свою высокую эффективность при решении множества прикладных задач. Однако уязвимым местом в таких моделях остается учет поглощающей способности корней, для обоснования которой и целесообразно использование структурных моделей, рассматривающих действие отдельных корней и содержащих локальные параметры поглощения.

Наиболее детально исследована схема изолированного корня [5 – 7], которая пригодна и для оценки действия ансамбля корней на первом этапе, когда отсутствует их конкуренция (зоны влияния соседних корней не перекрываются). Длительность такого этапа может быть относительно большой в случае малоподвижных ионов, как, например, фосфат-ион. В то же время при поглощении мобильных ионов корни начинают конкурировать через короткое время. Аналитическое решение, приведенное в [8], позволяет рассчитывать концентрацию иона в почвенном растворе вплоть до момента начала ее снижения посредине между соседними корнями.

ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Для описания динамики отдельных компонентов питательного режима на следующем этапе необходимо дополнительно задавать параметры, характеризующие особенности структуры активной части корневой системы. В первом приближении достаточно иметь плотность активных (сосущих) окончаний L_p , равную их суммарной длине в единице объема. Тогда, принимая простейшую модель равномерно и взаимно параллельно расположенных корней, а затем условно разбивая корнеобитаемую зону на соответствующее число элементарных физических областей (представляющих в сечении квадрат со стороной $1/\sqrt{L_p}$, можно ограничиться рассмотрением потока ионов в пределах любой из них. Подобные рассуждения, так как не учитывается движение ионов в вертикальном направлении (по оси z), имеют силу и в случае, если L_p - непрерывная по координате z функция. Таким образом, размер указанных областей в общем зависит от высоты их положения в зоне обитания корней. Как следствие этого, в рассматриваемой ниже задаче притока ионов к корню из некоторой канонической области с непроницаемой боковой поверхностью координата z по существу является параметром. Каждому значению z соответствует определенная величина L_p , а значит и размер физической области. В действительности строение корневой системы значительно сложнее из-за существенной пространственной неравномерности и произвольной ориентации корней. Исследования общей морфологии и геометрии реальных систем корней позволили установить общие закономерности формирования их структуры и построить модели [9, 10]. Однако они не нашли применения, что объясняется не только их сложностью, но и данными исследований [11], указывающими на возможность и достаточность использования упомянутой выше простой модели для природных сообществ корней.

Тогда, принимая упрощенный подход к описанию строения корневой системы, скорость поступления влаги в корень v_0 легко рассчитать, исходя из известных величин удельной интенсивности отбора влаги корнями растений (из единицы объема почвы) f_w , L_p и усредненного радиуса корня r_0 :

$$v_0 = \frac{f_w}{2\pi r_0 L_p}.\tag{1}$$

Для конкретных расчетов использовались надежные данные по функции f_w , полученные с помощью оригинальных установок [12], которые позволяют практически точно определять количество поглощаемой корнями влаги из каждого элементарного (0,1-метрового) слоя. Для удобства физическая область приводится к равновеликой цилиндрической с радиусом в сечении

$$R_m = \frac{1}{\sqrt{\pi L_p}}.$$

В условиях регулирования влажности почвы, обеспечивающего постоянное восполнение запасов влаги в корнеобитаемой зоне, оправдано использование решения стационарной модели влагопереноса, а именно rv = const. Тогда краевая задача для безразмерной концентрации нелимитированных питательных элементов $\bar{c}(\bar{r}, \bar{t})$ на втором этапе имеет вид [8]

$$\frac{\partial}{\partial \bar{r}} \left[(\bar{r}\bar{D}_0 + \bar{\lambda}) \frac{\partial \bar{c}}{\partial \bar{r}} + \bar{c} \right] = \frac{b}{\bar{r}_0} \bar{r} \frac{\partial \bar{c}}{\partial \bar{t}}, \qquad (2)$$

$$\bar{r} = \bar{r}_0, \qquad (\bar{r}_0 \bar{D}_0 + \bar{\lambda}) \frac{\partial \bar{c}}{\partial \bar{r}} + \bar{c} = \bar{I}_m, \qquad (3)$$

$$\bar{\sigma} = 1, \qquad (\bar{D}_0 + \bar{\lambda}) \frac{\partial \bar{c}}{\partial \bar{r}} + \bar{c} = 0.$$
 (4)

Здесь $\bar{r} = r/R_m$; $\bar{r}_0 = r_0/R_m$; $\bar{D}_0 = D_0/(r_0v_0)$; $\bar{\lambda} = \lambda/R_m$; $\bar{t} = v_0/(R_m\theta_*)$; $\bar{I}_m = I_m/(v_0c_*)$; $\bar{c} = c/c_*$; D_0 – коэффициент молекулярной диффувии; λ – коэффициент гидродинамической дисперсии; b – коэффициент, характеризующий буферную способность почвы; θ_* – средняя влажность почвы; I_m – предельный поток элементов в корни; c_* – средняя в области концентрация элементов в начале первой стадии (t = 0) или их концентрация на внешней границе области в начале второй стадии ($t = t_*$).

ī

Специальный анализ динамики влаги в рассматриваемой области, выполненный для типичной дерново-подзолистой почвы, показал, что даже при оптимальном водопотреблении культур имеют место очень низкие градиенты влажности (давления). Таким образом, величина θ практически не зависит от r и может приниматься равной θ_* . В качестве начальной кривой $\bar{c}^0(\bar{r})$ может служить распределение $\bar{c}(\bar{r}, \bar{t}_*)$, которое имеет место в конце первого этапа, когда зоны влияния соседних корней соприкасаются, так что $\bar{c}(1, \bar{t}_*) = 1$:

$$\bar{c}^{0}(\bar{r}) = 1 - \frac{1 - \bar{I}_{m}}{1 - \bar{r}_{0}} \Biggl\{ 1 - \bar{r} + \frac{1}{1 + \bar{D}_{0}} \times (5) \times \Biggl[\bar{r}\bar{D}_{0} + \bar{\lambda} - (\bar{D}_{0} + \bar{\lambda}) \left(\frac{\bar{D}_{0} + \bar{\lambda}}{\bar{r}\bar{D}_{0} + \bar{\lambda}} \right)^{\frac{1}{\bar{D}_{0}}} \Biggr] \Biggr\}.$$

Однако следует подчеркнуть, что особенно при малой длительности первого этапа для мобильных ионов вид функции $\bar{c}^0(\bar{r})$ существенной роли не играет. В дальнейшем черточки над переменными в этом разделе для удобства опускаются.

Для получения эффективного аналитического решения задачи (2) – (5) правая часть уравнения осредняется по рассматриваемой области и вводится вспомогательная функция ψ :

$$\psi(t) = \frac{1}{1 - r_0} \int_{r_0}^1 r \frac{\partial c}{\partial t} dr.$$

Распределение концентрации в области движения после несложных преобразований найдено в виде

$$c = I_m + b\psi \left(\frac{r}{r_0} - 1\right) - \frac{b}{r_0} \frac{\psi}{1 + D_0} \times \\ \times \left[rD_0 + \lambda - (D_0 + \lambda) \left(\frac{D_0 + \lambda}{rD_0 + \lambda}\right)^{\frac{1}{D_0}} \right].$$

Величина $\psi(t)$ определяется в результате решения следующей задачи:

$$\frac{1}{1-r_0} \int_0^1 r \frac{\partial c}{\partial t} dr = \psi, \qquad \psi(0) = \psi^0 = \frac{-r_0 I_m}{b(1-r_0)}.$$

Окончательно выражение для искомой величины c(r,t) будет

$$c = I_m - \frac{I_m}{1 - r_0} e^{at} \left\{ r - r_0 - \frac{1}{1 + D_0} \times \left[rD_0 + \lambda - (D_0 + \lambda) \left(\frac{D_0 + \lambda}{rD_0 + \lambda} \right)^{\frac{1}{D_0}} \right] \right\}, \quad (6)$$

где

$$a = \frac{r_0(1-r_0)(1+D_0)}{b\aleph};$$

$$\begin{split} \aleph &= \frac{1 - r_0^3}{3} - (r_0 + r_0 D_0 + \lambda) \frac{1 - r_0^2}{2} + \frac{1}{D_0 - 1} \times \\ &\times \left\{ (D_0 + \lambda)^2 - \frac{(D_0 + \lambda)^3}{2D_0 - 1} + (D_0 + \lambda)^{\frac{1}{D_0} + 1} \times \right. \\ &\times \left[\frac{(r_0 D_0 + \lambda)^{2 - \frac{1}{D_0}}}{2D_0 - 1} - r_0 (r_0 D_0 + \lambda)^{1 - \frac{1}{D_0}} \right] \right\}. \end{split}$$

В частном случае $\lambda \to 0$ (в микрообластях при малых числах Пекле массоперенос осуществляется главным образом за счет молекулярной диффузии)

$$c = I_m - \frac{I_m}{1 - r_0} \left[r - r_0 - \frac{D_0}{1 + D_0} (r - r_0^{-\frac{1}{D_0}}) \right] e^{at},$$
(7)

$$\chi \approx \frac{1}{3} - \frac{r_0}{2}(D_0 + 1) + \frac{1}{D_0 - 1} \left\{ D_0^2 \frac{D_0 - 1}{2D_0 - 1} + \right\}$$

 $+D_0^{1+\frac{1}{D_0}} \left[\frac{(r_0 D_0)^{2-\frac{1}{D_0}}}{2D_0 - 1} - r_0 (r_0 D_0)^{1-\frac{1}{D_0}} \right] \right\}.$

В случа
е $D_0 \to 0$ путем предельного перехода в выражении (б) найдено

$$c = I_m + \frac{I_m}{1 - r_0} \left[r - r_0 - \lambda (1 - e^{\frac{1 - r}{\lambda}}) \right] e^{at}, \quad (8)$$

где

$$a = \frac{(1-r_0)r_0}{b} \left[\frac{1-r_0^3}{3} - (r_0 + \lambda) \frac{1-r_0^2}{2} - \lambda^2 (1-r_0 exp \frac{1-r_0}{\lambda}) - \lambda^3 (1-exp \frac{1-r_0}{\lambda}) \right]^{-1}.$$

Анализ выражений для коэффициента a свидетельствует о возможности очень простого их вычисления. В частности, при больших λ из уравнения(8) вытекает, что

$$a = \frac{2(1-r_0)r_0}{b(1-r_0+\frac{r_0}{6\lambda})} \approx 2\frac{r_0}{b}.$$

Это выражение для *a* подтверждает известный факт, что увеличение суммарной боковой поверхности корней обуславливает адекватное усиление поглощения ими элементов питания.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При отсутствии оперативного регулирования питательного режима запасы элементов постепенно истощаются. В наибольшей степени снижается их концентрация вблизи сосущих корней, что может со временем приводить к значительному уменьшению интенсивности поглотительного процесса І. Согласно теории Михаэлиса-Ментен, предельное значение І_т достигается только при концентрации $C \to \infty$ и значит при любых конечных значениях С в рамках концепции биологической сплошной среды I < I_m. Такая формализация вполне оправдана, если при больших $C \ I$ мало отличается от Im. Тогда целесообразно условно ввести некоторое пороговое значение C_n , ограничивающее снизу множество значений С, при которых $I/I_m \leq \varepsilon$, а наперед заданное число $\varepsilon \ll 1$. По нашим оценкам на базе данных [1] ориентировочные значения C_n при $\varepsilon = 0,05$ составляют для NO_3^- и кукурузы 0,45 ммоль/л, P и сои - 0,1 ммоль/л, K и кукурузы - 0,3 ммоль/л, а при $\varepsilon = 0,1$ приблизительно в два раза меньше. Таким образом, естественно полагать, что исходная модель и ее решение работают только до момента t_n , при котором $C(r_0, t)$ становится равной C_n .

В. Л. Поляков

Полученное выше решение в основном отражает особенности микроструктуры корневой системы, характерные микронеоднородности поля концентраций и может с успехом использоваться для обоснования эффективных моделей биологических сплошных сред [13]. Действие корней в зоне их обитания моделируется в таких моделях распределенным по указанной зоне объемным стоком, интенсивность которого является непрерывной по пространству и времени функцией. Очевидно, что интенсивность поглощения питательных элементов из любого наперед выделенного объема при этом должна равняться суммарной интенсивности поглощения всех активных корней, расположенных в этом же объеме. Сохранение расхода элементов вследствие их абсорбции растениями при переходе к более формальной модели биологической сплошной среды является принципиальным и способствует получению на ее базе в целом правильной картины. Однако до сих пор нерешенной остается проблема обоснования такого перехода теоретическим путем.

Количество нелимитируемых питательных веществ, отбираемых в единицу времени из единичного объема почвы (удельный отбор) q, в размерной форме будет

$$q = 2\pi r_0 L_p I_m, \qquad (9)$$

а в течение периода времени $[t_1, t_2]$ при меняющихся в ходе развития корневой системы параметрах $L_p(t)$ и $I_m(t)$ поглощается питательных веществ $2\pi r_0 \int_{t_1}^{t_2} L_p I_m dt$.

Так как почвенная влага аккумулирует доступные растениям питательные элементы и является их носителем, то естественно связывать поток ионов в корни в рамках модели сплошной среды с аналогичным отбором влаги. Часто для этой цели используется простая модель [14, 15]

$$Q = \alpha f_w C, \tag{10}$$

где α – коэффициент, требующий доопределения и, как правило, выбиравшийся без какого-либо обоснования; *С* – концентрация элементов, рассчитываемая на базе модели сплошной среды. Значение коэффициента α можно формально найти, приравняв выражения (9) и (10). Тогда

$$\alpha = \frac{c_* \bar{I}_m}{C}.$$
 (11)

Из модели (2) – (5) при неизменных запасах влаги в области движения и отсутствии притока извне питательных элементов вытекает

$$\frac{c_*}{C} = \left(1 - 2\frac{\bar{r}_0\bar{I}_m}{b}\bar{t}\right)^{-1}.$$
 (12)

Более распространены модели поглощения для сплошной среды, аналогичные по форме уравнению Михаэлиса-Ментен, или их аналоги для малых концентраций ионов соответственно [16, 17]:

$$Q = \frac{Q_m C}{K_g + C}, \qquad Q = k_g C. \tag{13}$$

Из сопоставления выражений (13) с величинами q, найденными на базе модели (2) – (5) при общем законе поглощения следует

$$Q_m = 2\pi r_0 L_p I_m, \qquad (14)$$

$$K_g = K_m \frac{C}{c_0},$$

$$k_g = 2\pi r_0 L_p k_m \frac{c_0}{C} = \frac{Q_m}{K_m} \frac{c_0}{C},$$
(15)

где c_0 – величина концентрации c на поверхности корня ($r = r_0$), которую можно вычислить по формулам (6) – (8).

Обоснованность перехода от структурной модели к модели сплошной среды на базе соотношений (15) определяется достоверностью выбора С. Строго говоря указанная величина должна быть получена на основе обобщенной модели переноса, отбора корнями и трансформации питательных элементов с учетом факторов окружающей среды. Вместе с тем такой строгий подход к динамике питательных элементов на микроуровне вряд ли целесообразен. Тем не менее представляется возможным для определения K_g, k_g использовать также решение структурной модели в качестве искомого решения обобщенной модели при упрощенных условиях (пренебрегая обменом элементами питания между микрообластями, действием внутренних источников и стоков кроме абсорбции корнями, характером поглощения ионов при их ограниченном содержании в почвенном растворе). Тогда величина С может быть найдена или путем осреднения приближенных распределений с по области движения (от r_0 до r_m) (6), (7), или исходя из выражения (12), что более просто и надежно. Кстати, значения С, рассчитанные двумя указанными способами, мало отличаются (до 1 – 3 %), что является еще одним подтверждением высокой точности полученного аналитического решения.

Снятие упомянутых выше ограничений должно несколько повышать надежность установления K_g , k_g по (15), но приводит к существенным осложнениям при использовании структурной модели как базовой для определения C, c_0 . Поэтому такой путь совершенствования перехода от микроуровня к макроуровню при описании поглотительного процесса требует дополнительных исследований.

Выбор коэффициентов K_g , k_g при известных *K_m*, *k_m* иллюстрируется на примерах со следующими исходными данными: $\bar{D}_0 = 50, 100, 200; \bar{\lambda} =$ 10, 20; b для мобильных (N) и умеренно подвижных (К) элементов принимался 24, для малоподвижных (P)-150; $\bar{I}_m=3$ (N), $\bar{I}_m=20$ (K), $\bar{I}_m=100$ $(P); \bar{r}_o = 0.04$. На рис.1 приведены кривые снижения концентрации с на внутренней и внешней границах области движения. Величина с для N практически не зависит от r, так что соответствующие значения с мало отличаются и кривые $c(1,t), c(r_o,t)$ показаны одной линией (1). Как следствие этого, из выражения (15) вытекает, что для N можно полагать $K_g = K_m, k_g = 2\pi r_0 L_p k_m$. Медленное снижение С объясняется относительно большими запасами N в почве. Основной является вторая стадия. Иначе обстоит дело при поглощении К, о чем свидетельствует прежде всего характер снижения его концентрации около корня (кривая 2) и на внешней границе (кривая 3). На первой стадии ($\bar{t}_* = 0.54$) $\bar{c}(r_0, t)$ уменьшается до 0,736, а на второй стадии происходит равномерное по области понижение \bar{c} . При $\varepsilon = 0.1$ безразмерное пороговое значение \bar{c}_n примерно составляет 0,4. На рис.2 показаны графики изменения отношения K_g/K_m во времени для различных сочетаний D_0 и λ . Указанные кривые имеют достаточно пологие участки, соответствующие второй стадии вплоть до момента критического снижения концентрации у корня \bar{t}_n . Наличие этих участков позволяет установить константу ν , с помощью которой затем приближенно вычисляется $K_g \approx \nu K_m$. Достаточно строго значение ν может быть найдено путем осреднения отношения C/c_0 на интервале $[\bar{t}_*, \bar{t}_n]$. Тогда

$$\nu = 2 \frac{\bar{r}_0 \bar{I}_m}{\gamma a b} - \frac{1}{\gamma a} \left(1 - 2 \frac{\bar{r}_0 \bar{I}_m (\bar{I}_m - \gamma)}{\gamma a b} \right) \frac{1}{\bar{t}_{\pi} - \bar{t}_*} \times \\ \times ln \frac{\bar{I}_m - \gamma - \gamma a (\bar{t}_{\pi} - \bar{t}_*)}{\bar{I}_m - \gamma}, \tag{16}$$

где

$$\gamma = -\frac{I_m}{(1+\bar{D}_0)(1-\bar{r}_0)} \times \left[\bar{r}_0\bar{D}_0 + \bar{\lambda} - (\bar{D}_0 + \bar{\lambda})\left(\frac{\bar{D}_0 + \bar{\lambda}}{\bar{r}_0\bar{D}_0 + \bar{\lambda}}\right)^{\frac{1}{\bar{D}_0}}\right]$$

Ŧ

Рис.2. Изменение во времени отношения K_g/K_m для калия: 1 – $D_0 = 50, \lambda = 10; 2 - D_0 = 50, \lambda = 20; 3 - D_0 = 100, \lambda = 20$

Рис.3. Изменение во времени отношения K_g/K_m для фосфора: 1 – $D_0 = 50, \lambda = 10; 2 - D_0 = 50, \lambda = 20; 3 - D_0 = 200,$ $\lambda = 20$

Определение ν с использованием выражения (16) дало следующие значения: для первого примера (кривая 1) - 1.911, второго (кривая 2) - 1.465 третьего (кривая 3) - 1.296 (первая стадия в расчет не принималась вследствие ее кратковременности).

В случае малоподвижных ионов (P) концентрация около дрены быстро снижается (рис.1, кривая 4) и уже на первой стадии достигает порогового значения. При этом отношение K_g/K_m , как видно из рис.3, существенно меняется со временем, что осложняет выбор коэффициента ν . Формально данный коэффициент также может быть найден путем осреднения отношения C/c_0 на интервале $[0, \bar{t}_n]$. Однако эффективность такого приема здесь вызывает сомнение. Более надежно значение ν может быть найдено на базе структурной модели лимитированного отбора ионов отдельными корнями, решение которой будет представлено в дальнейшем.

ЗАКЛЮЧЕНИЕ

Поглощение питательных элементов корнями растений имеет важнейшее значение для функционирования агроэкосистем. Моделирование абсорбционного процесса в таких системах требует экспериментального определения ряда обобщенных параметров, что связано с большими трудностями в организации и проведении специальных вегетационных опытов. Благодаря построенному аналитическому решению нестационарной задачи о притоке ионов к активным корням в условиях их конкуренции и предложенному подходу к использованию экспериментальных результатов на микроуровне для описания комплекса почвенных процессов в рамках модели биологической сплошной среды становится принципиально возможным получать необходимую обобщенную информацию о поглощающей способности сообщества растений с большей полнотой и меньшими затратами.

- 1. Барбер С.А. Биологическая доступность питательных веществ в почве.- М.: Агропромиздат, 1988.-376 с.
- Cushman J. H. Completion of the list of analytical solutions for nutrient transport to roots: 1. Exact linear models // Water Resour. Res.- 1980.- 16.- P. 891-906.
- 3. Nye P. H., Marriott F. H. A. A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow // Plant and Soil.- 1969.- **30**.- P. 459-472.

- Phillips R. E., NaNagara T., Zartman R. E., Zeggett J. E. Diffusion and mass flow of nitrate – nitrogen to plant roots // Agron J.- 1976.- 68.- P. 63-67.
- Elgawhary S. M., Malzer G. Z., Barber S. A. Calcium and strontium transport to plant roots // Soil Sci. Soc. Amer. Proc.- 1976.- 36.- P. 794-800.
- Bar-Yosef B., Fishman S., Talpaz H. A model of zone movement to single roots in soils // Soil Sci. Soc. Am. J.- 1980.- 44.- P. 1272-1279.
- Smerthurst P. J., Comerford N. B. Simulatiny nutrient uptake by single or competing and contrasting root system // Soil Sci. Soc. Am. J.- 1993.- 57.- P. 1361-1367.
- Поляков В.Л. Неустановившийся приток нелимитированных питательных веществ к изолированным корням // Гидромеханика. – 1997. – N 71. – С. 98–104.
- Diggle A. J. Rootmap-a model in three dimensional coordinates of the growth and structure of fibrous root systems // Plant and Soil.- 1988.- 105,2.- P. 169-178.
- Tennant D. Root growth of wheat. I. Early patterns of multiplication and extention of wheat roots including effects of level of nitrogen, phoaphorus and potassium // Aust. J. Agric. Res. - 1976. - 27,2. - P. 183-196.
- 11. Най П., Тинкер П. Цвижение растворов в системе почва растение. М.: Колос, 1980. 368 с.
- 12. Коваленко П.И., Яцык Н.В. Оптимизация уровенных режимов грунтовых вод на системах с двухсторонним регулированием водного режима почв // Повышение эффективности осушительноувлажнительных систем. М.: Укр НИИГиМ, 1985. 8-16 с.
- Селезов И.Т., Ткалич В.С., Черненко И.В. Модельное обоснование кинетики сорбционных процессов в корнях растений // Физиология и биохимия культ. растений.- 1988.- 20, 1.- С. 34-38.
- Айдаров И.П. Регулирование водно-солевого и питательного режимов орошаемых земель. – М.: Агропромиздат, 1985. – 304 с.
- 15. Рекс Л.М., Якиревич А.М. Методика расчета тепловлагосолепереноса в насыщенных и ненасыщенных грунтах с помощью ЭВМ // Моделирование гидрогеохимических процессов и научные основы гидрогеохимических прогнозов.- М.: Наука, 1985.-174-182 с.
- Selim H. M., Iskandar I. K. Modeling nitrogen transport and transformations in soils: 1. Theoretical considerations // Soil. Sci.- 1981.- 131,4.- P. 233-240.
- McGill W. B., Hunt H. W., Woodmanser R. G., Reuss J. O. PHOENIX, a model of the dunamics of carbon and nitrogen in grassland soils // Clark F. E., Rosswall T. Terrestrial Nitrogen Cycles. Ecol. Bull.- 1981.- 33.-P. 49-115.