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TWO-DIMENSIONAL STOKES FLOW IN A SEMICIRCLE
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IlocTpoeHo TOYHOE pelleHNe 3aAadl O ABYMEPHOM TedeHMH CTOKCa B MONYyKpyre, BEIBBAHHOE PABHOMEPHBIM JBIMKEHHEM
KPpyTOBOH MIN NPAMONUHENHON IpaHunbl. IIpuBeAeHBl KOHTYPHBIE IMHUN TOKa U THUINYHOE paclpefeleHNne CKOPOCTH.

Tlo6yqoBaHO TOYHUN POBB'AB0K 3a4ad4l Ipo ABOBUMIpHY Tedviio CTOKca y HAMBKPYS3I, AKa 3YyMOBIEHA PIBHOMIPHUM PYyXOM
kpyrosol abo npamodniHinHol rpanuil. [TaBeaeHl KOHTYPHI MiHI1 TOKa Ta TUIOBUN POBIOALI MBUAKOCTI.

The exact analytical solution for the two-dimensional Stokes flow in a semicircle due to uniformly moving circular or
straight boundary is obtained. The contour streamline pattern and a typical velocity distribution are shown.

INTRODUCTION

Two-dimensional fluid motions in which inertia
forces are negligible compared to viscous forces
(creeping or Stokes flows) have been widely studied.
The linear form of the governing biharmonic equa-
tion yield, in many cases, closed-form solutions for
flows in some canonical domains. On the other hand,
there exists only an approximate solution [5, 6] for a
problem of motion in a semicircle induced by a uni-
form tangential velocity at a circular boundary. In
the present note we provide the exact analytical so-
lution for this problem.

The method of solution is based on a usage of the
bipolar coordinate system. This system for the two-
dimensional biharmonic equation was employed early
for exact solutions of problems for both Stokes flow
[3, 4, 8] and elastic stresses [2, 7] in domains enclosed
by eccentric cylinders.

1. STATEMENT OF THE PROBLEM

Consider Stokes flow inside a semicircle 0 < r < a,
0 < 0 < 7 generated by either a constant tangential
velocity V applied at the curved part of the boundary,
or a constant tangential velocity U applied at the
plane part of the boundary. The rest of the boundary
remains unmovable.

The velocity field is given in terms of the stream

function ¢(r, 8) by

e e
T o or’

where 1 satisfies the biharmonic equation

Ug
AAY =0, (2)

with A = % + % % + T% g’—; is the Laplace operator
in the polar coordinates (r, 8).
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The boundary conditions for equation (2) are either

v = 0, g—zzo at =07, 0<r<a,

v = 0, a—1/):—1/ at r=a, 0<60<m (3)
or - -

or
o

v = 0, %—Ur at 8 =0, 0<r<a,
o

v = 0, %——Ur at 6=m, 0<r<a,

v = 0, 2—1/):0 at r=a, 0<0<m. (4

r

2. METHOD OF SOLUTION

The biharmonic equation (2) for both boundary
conditions (3) and (4) admits exact solution which
can be obtained by means of bipolar coordinates. The
bipolar coordinate system (&, n) is introduced accord-
ing the relation

§+1in
2 b)

r+iy =aictg (5)
so that the two poles of the coordinates are located
on the z-axes at the points (+a,0). Then
z=rcostl = Jshny, y=rsind=Jsiné, (6)

with J = a/(chn — cos¢), and the semicircle 0 < r <
a, 0 < 6 < 7 in polar coordinates transforms into
the strip —oo < 7 < oo, #/2 < £ < 7 in the bipolar
coordinates.

The biharmonic equation (2) in the bipolar coor-
dinates can be rewritten as

R\ otw 9t

20 9%
5e 2 egr g  ant

de? —2 an?

+U =0 (7)
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for the auxiliary function ¥ = ¢/.J.
By means of equality

ov 1 0y o(/J)y o sin £
T TV T Tame TV a
(where ng denotes the outer normal to the line § =

const) we can reformulate the boundary conditions
(3) in terms of ¥ as

v o= 0, 66—?:0 at 6237, In| < oo,
v - o %—?:v at E=m |p|<oo (8)

By choosing a solution of equation (7)

U =Asiné + Beosé+ C&siné + DEcosé, (9)

we can satisfy all boundary conditions (8), provided
that the values of the constants A, B, C, D are:

27 272
A= B=———
71'2—4V’ 71'2—4V’
4 27
C=- V, D= V. 10
T2 —4 " w2 —4 (10)

Returning from ¥(&) in (9) to the stream function
¥(r,0) by means of equalities

2 2
. . re—a
Jsiné =rsinf, Jcosé= ,
2a
2arsin 0
€ =T — arctg m,
after some reductions, we come to the expression
2V w(a® —r?) +4arsin 6
= 3 X (11)
T —4 2a
2arsin 6 .
x arctg pep sin@|.

The behaviour of the stream function ¥ near the
corner point 7, = a, 8. = 0 can be obtained from
expansion into Taylor series the expression (12) in
the local polar coordinates (p, x) with rcosf = a —
psiny, rsinf = pcos x. The first linear on p term is:

y 4V p n 1 . T
oc = —— | x cos —mysiny — —siny |,
loe = 73 | X cosx + gmxsiny — —-siny

which corresponds to the Goodier [1] - Taylor [10]
solution for a quarter plane p > 0, 0 < y < /2 with
the constant tangential velocity —V applied at the
plane xy = 0.

The exact solution of (2) for the boundary condi-
tions (4) can be derived in a similar way,

2U rwarsin® + a® —r?
= — 12
¥ 72 —4 a ~ (12)
< arct 2arsing 1 , . 0
arctg 2 271' rsind|.
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Fig. 1. Streamline pattern of the Stokes flow in a semi-
circle according to exact solution (12). The streamlines
are plotted for the contour lavels ¢, = 0.015Van with
n =1,...,10. The maximum value of the stream function
at the stagnation point is 0.1713V a.

Fig. 2. Streamline pattern of the Stokes flow in a semicir-
cle according to approximate solution (14). The stream-

lines are plotted for the contour lavels zZJn = 0.015Van
with n =1, ..., 10.

3. RESULTS AND DISCUSSION

Fig. 1 shows a streamline pattern for the flow de-
scribed by equation (12). The flow forms a single
vortex cell which has one stagnation elliptic point
r. = 0.636a, 6. = 7/2.

It was reported [5, 6] that the approximate solution
of the problem (2), (3) is

P [ () e
with v = (11/3)% — 1 = 0.915. It is worth noting

that this solution does not satisfy both the governing
biharmonic equation (2) for the stream function and

(13)

the non-slip conditions (3) at the moving boundary.
However, the streamline pattern presented in Fig. 2
(see also Fig. 8.2.3in [9]) for the approximate solution
(14) has qualitatively similar appearence with Fig. 1.

Fig. 3 represents a distribution of the tangential
velocity ug along the middle line # = 7/2 of the cav-
ity. Again, we see a reasonable quantitative corre-
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Ug/V

Fig. 3. Cross-sectional distribution of the tangential ve-
locity ug along the line § = 7/2 for exact solution (12),

solid line, and approximate solution (14), dashed line.

spondence between exact and approximate solutions
in the centre of the cavity. Omne should note the
essential difference between velocities at the curved
boundary: the approximate solution provides the val-
ue 1.333V instead of the prescribed value V. Besides,
the approximate solution underestimates significantly
the velocity near the corner points: at the boundary
7 = a the tangential velocity ug varies as %V sin” 0
instead of being constant. These discrepancies may
have a crucial importance for a quantitative study of
mixing process in such a cavity.

4. CONCLUSION

Thus, usage of the bipolar coordinates provides
exact analytical solution for Stokes flow in a semi-
circle induced by uniform tangential velocities at
the boundary. Such solution seems to be impor-
tant for accurate analysis of mixing process in the
partitioned-pipe mixer [5, 6, 9].

For a nonuniform velocity distribution along the
boundaries the exact solution can be constructed in
a form of some integrals. In particular, the case when
nonzero constant tangential velocity is applied at the
boundary r» = a with 8y < 8 < 7 — 6y is particularly
interesting because it can provide both an analytical
expression of the amplitudes of the Moffatt eddies in
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a finite cavity and a clear picture of the competition
between local and far-field effects for dominance in
the neighbourhood of the corner points.
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