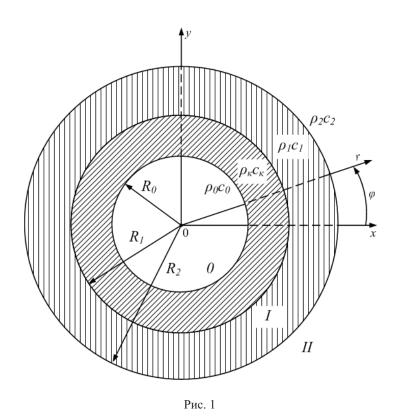
О КОЭФФИЦИЕНТЕ ПРОХОЖДЕНИЯ ЭНЕРГИИ ПЬЕЗОКЕРАМИЧЕСКОГО ИЗЛУЧАТЕЛЯ ЧЕРЕЗ ЦИЛИНДРИЧЕСКИЙ СЛОЙ

А. Г. ЛЕЙКО, М. Г. ПЛЕСКАЧ

Национальный технический университет Украины «Киевский политехнический институт» пр. Победы 37, г. Киев, тел. 454 90 72


The subject of studies is an acoustic field of a cylindrical piezoceramic transducer in the presence of an impedance matching layer. This research is purposed to determine the influence such a layer has on the transducer's sound emitting ability, taking into account the transducer's finite mechanical impedance. A number of analytic expressions are obtained, determining the sound field's properties depending on the transducer's wavelength size. A computer modelling allowed making a few conclusions about the layer's influence on the sound pressure magnitudes. The results can be utilized in transducer development, helping to calculate the operational characteristics of similar type devices.

ВВЕДЕНИЕ

Рассматривается задача об излучении звука круговым цилиндрическим пьезокерамическим преобразователем, расположенном в замкнутом цилиндрическом слое конечных толщины и звукопрозрачности. Такая задача имеет несомненный практический интерес — в последнее время в конструкциях акустических приборов, используемых, например, в медицине, широко применяются переходные слои с физическими параметрами, величины которых лежат между соответствующими значениями параметров активного материала и рабочей среды. Заметим, что ранее подобная задача рассматривалась в ряде работ, например, [1]. При этом полагалась заданной колебательная скорость на излучающей поверхности акустического прибора. Такой преобразователь, по сути, рассматривался как генератор колебательной скорости с бесконечно большим внутренним импедансом, поскольку его колебательная скорость не зависела от реакции рабочей среды на возбуждение в ней звукового поля. Естественно, что такая модель является идеализированной и существенно отличается от реальной ситуации, когда внутренний импеданс излучателя является величиной конечной.

ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Учет имеющих место при излучении звуковых волн электромеханического и механоакустического преобразования энергии предполагает использование таких методов расчета, в основе которых лежит решение уравнений движения колебательной системы преобразователя с учетом и пьезоэффекта, и реакции рабочей среды на движение такой системы. Подобный подход позволяет учесть взаимное влияние электрических, механических и акустических полей, действующих в преобразователе. При выполнении инженерных расчетов наиболее целесообразным является применение одной из разновидностей такого подхода — метода энергетических эквивалентов, позволяющего относительно просто оценить эффективность электромеханического преобразователя.

звука Задачу излучения круговым цилиндрическим пьезоэлектрическим преобразователем через цилиндрический слой конечных толщины и звукопрозрачности решим указанным методом. На рис. 1 изображены нормальное сечение рассматриваемого преобразователя в слое и выбранная для решения система координат в предположении бесконечной длины преобразователя и слоя (что справедливо, если она превышает 7÷10 длин волн на рабочей частоте). Преобразователь имеет вид полого радиально поляризованного пьезокерамического цилиндра среднего радиуса $R_{cp} = (R_1 - R_0)/2$ толщиной $h_0 = R_1 - R_0$. Сплошные электроды покрывают его внешнюю и внутреннюю поверхности. Под действием гармонического напряжения $u = Ue^{-i\omega t}$ преобразователь излучает звук на нулевой моде колебаний в рабочую среду с волновым сопротивлением $\rho_2 c_2$ через переходной слой с волновым сопротивлением $\rho_1 c_1$. Внутренний объем цилиндра заполнен средой с параметрами $ho_0 c_0$. Будем считать, что толщина цилиндра h_0 намного меньше его радиуса R_{cp} - для такого преобразователя справедлива прикладная теория, основанная на гипотезах Кирхгофа-Лява о напряженно-деформированном состоянии тонких пластин и оболочек.

Согласно методу частичных областей всю область существования звукового поля преобразователя разобьем на 3 частичные области: область 0, которая соответствует внутреннему объему цилиндра, область I, соответствующую переходному слою, и область II, охватывающую рабочую среду.

Потенциалы звукового поля в указанных областях – соответственно Φ_0 , Φ_1 и Φ_1 – запишем в виде разложений по цилиндрическим волновым функциям:

$$\Phi_{0}(r,\varphi) = \sum_{m=-\infty}^{\infty} L_{m}J_{m}(k_{0}r)e^{im\varphi} ,$$

$$\Phi_{1}(r,\varphi) = \sum_{m=-\infty}^{\infty} \left[E_{m}J_{m}(k_{1}r) + F_{m}N_{m}(k_{1}r) \right]e^{im\varphi} ,$$

$$\Phi_{2}(r,\varphi) = \sum_{m=-\infty}^{\infty} A_{m}H_{m}^{(1)}(k_{2}r)e^{im\varphi} .$$
(1)

Здесь L_m , E_m , F_m и A_m - неизвестные коэффициенты разложений; $J_m(k_0r)$, $N_m(k_1r)$, $H_m^{(1)}(k_2r)$ - соответственно функции Бесселя, Неймана и Ханкеля первого рода; k_0 , k_1 , k_2 – волновые числа соответствующих областей.

Для того, чтобы найти неизвестные коэффициенты, воспользуемся условием связанности электрических, механических и акустических полей преобразователя в виде:

$$p_1|_{r=R_1} - p_0|_{r=R_0} + \nu Z_{ecv} = nU$$
, (2)

а также условиями сопряжения звуковых полей на границах раздела областей:

$$\begin{aligned} v_1 \big|_{r=R_1} &= v_0 \big|_{r=R_0} = v ,\\ v_1(r) \big|_{r=R_2} &= v_2(r) \big|_{r=R_2} ,\\ p_1(r) \big|_{r=R_2} &= p_2(r) \big|_{r=R_2} . \end{aligned} \tag{3}$$

В выражениях (2)-(3) p_0 , p_1 , p_2 и v_0 , v_1 , v_2 — соответственно звуковые давления и колебательные скорости в областях 0, I и II; v — колебательная скорость поверхности преобразователя; Z_{ecv} — механический импеданс преобразователя-цилиндрической оболочки на единицу его высоты; n — коэффициент электромеханической трансформации; U — электрическое напряжение возбуждения преобразователя.

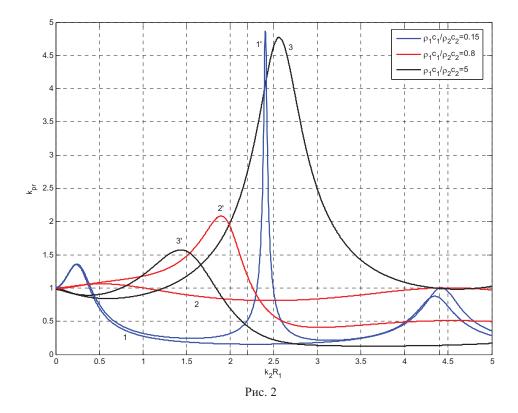
Произведя алгебраизацию выражений (2)-(3) с учетом соотношений (1), получим искомые выражения, которые описывают формируемое пульсирующим излучателем звуковое поле во всех областях его существования.

Определим коэффициент прохождения звука через переходной слой [1] как:

$$k_{np} = \left| p_2 / \tilde{p}_2 \right|_{r=R_2},$$

где p_2 - давление на внешней поверхности переходного слоя $r=R_2$, \tilde{p}_2 - давление, создаваемое преобразователем на этой поверхности в отсутствие переходного слоя. С учетом произведенных преобразований выражение для k_m примет вид:

$$k_{np} = \frac{\rho_1 c_1}{\rho_2 c_2} \cdot \left| \frac{\tilde{Z}_m}{Z_m} \cdot \frac{B_0 J_0(k_1 R_2) + N_0(k_1 R_2)}{B_0 J_1(k_1 R_1) + N_1(k_1 R_1)} \cdot \frac{H_1^{(1)}(k_2 R_1)}{H_0^{(1)}(k_2 R_2)} \right|. \tag{4}$$


Здесь Z_m и \tilde{Z}_m - полные механические импедансы, соответственно, преобразователя с переходным слоем и преобразователя без него.

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ И ИХ АНАЛИЗ

На рис. 2 приведены результаты расчетов частотных зависимостей коэффициента прохождения звука через цилиндрический слой для разных значений $n = \rho_1 c_1/\rho_2 c_2$ отношения волновых сопротивлений материала переходного слоя и окружающей среды. Здесь кривые 1-3 соответствуют значениям n=0.15; 0.8; 5, а кривые 1'-3' соответствуют

случаю, когда k_{np} рассчитывался без учета электромеханического преобразования энергии — т.е. для описанного ранее преобразователя-генератора колебательной скорости с бесконечным внутренним импедансом. Заметим, что с целью облегчения последующего анализа внутренний объем цилиндра полагался заполненным вакуумом $\rho_0 c_0 = 0$. Рабочая среда — вода с параметрами $\rho_2 c_2 = 1.5 \cdot 10^5 \, \mathrm{kr} \cdot \mathrm{c/m}^2$. Расчеты производились для преобразователя в слое радиусами $R_0 = 64 \cdot 10^{-3} \, \mathrm{m}$ и $R_1 = 72 \cdot 10^{-3} \, \mathrm{m}$, выполненного из пьезокерамики с параметрами $c_{\kappa} = 3500 \, \mathrm{m/c}$, $\rho_{\kappa} = 7250 \, \mathrm{kr/m}^3$, $S_{11}^E = 10.7 \cdot 10^{-12} \, \mathrm{m}^2/\mathrm{H}$, $d_{31} = -134 \cdot 10^{-12} \, \mathrm{k/m}$, $Q_m = 200$. Волновая толщина переходного слоя при этом оставалась неизменной.

Как видно из приведенных результатов, учет в расчетной модели излучателя с переходным слоем внутреннего импеданса пьезокерамической оболочки приводит к существенным отличиям коэффициента прохождения звука через слой по сравнению с моделью, где такой импеданс считался бесконечным. Основные резонансы k_{np} теперь находятся в области частот, определяемых резонансом колебательной системы «преобразователь-переходной слой». Частота этих резонансов с увеличением отношения n уменьшается в связи с увеличением эквивалентой массы переходного слоя.

ЛИТЕРАТУРА

1. Гринченко В.Т., Вовк И.В. Волновые задачи рассеяния звука на упругих оболочках. – К.: Наук. думка, 1986. - 240 с.