ПРИМЕНЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ ДЛЯ МОДЕЛИРОВАНИЯ РАСПРОСТРАНЕНИЯ СИГНАЛОВ В ВОЛНОВОДАХ МЕЛКОГО МОРЯ

О. Р. ЛАСТОВЕНКО, В. А. ЛИСЮТИН, А. А. ЯРОШЕНКО

Севастопольский национальный технический университет Университетская 33, Севастополь 99053, Крым, Украина

Гидроакустический волновод рассматривается как канал связи, отклик которого на входной сигнал определяется импульсной характеристикой канала. Импульсная характеристика восстанавливается с помощью обратного преобразования Фурье от акустического поля, представленного в виде суммы мод. Осуществляя дискретную свертку реализации сигнала с импульсной характеристикой волновода, моделируются его отклики на сигналы с быстро меняющимся спектром.

ВВЕДЕНИЕ

В настоящее время отмечается устойчивый интерес к акустике мелкого моря, поскольку именно в зоне морского шельфа сосредоточена значительная доля природных ресурсов, важных для хозяйственной деятельности человека.

Мелким принято считать море, в котором звуковое поле определяется акустическими характеристиками дна и изменчивым профилем скорости звука. Телекоммуникационное обеспечение как подводных стационарных, так и погружаемых объектов различного назначения осуществляется в том числе с помощью звукоподводных систем связи, передающих и принимающих акустические сигналы со сложными видами модуляции [1]. Сигнал, принятый антенной, расположенной на значительном расстоянии от источника из-за волноводной межмодовой и внутримодовой дисперсии будет значительно отличаться от излученного.

Теоретически задача о распространении сигнала со стационарным спектром через канал с известным законом дисперсии решается с помощью интеграла Фурье. Для широкополосного сигнала решение интеграла Фурье чаще всего находят с помощью метода стационарной фазы, а для узкополосного используют приближения теории дисперсии [2]. Однако, методы, в основе которых лежит преобразование Фурье, оказываются в принципе неприменимы для сигналов с быстро изменяющимся спектром.

Гидроакустический волновод возможно рассматривать как четырехполюсник, отклик которого на входной сигнал определяется комплексным коэффициентом передачи (ККП) $H(\omega)$ или импульсной характеристикой (ИХ) h(t), связанными парой преобразований Фурье. Если ИХ канала известна, то выходной сигнал можно определить, «свернув» входной сигнал с ИХ, при этом все операции выполняются в пределах временной области.

ПОСТАНОВКА ЗАДАЧИ

Горизонтально-слоистую модель волновода сравнения, дисперсионные характеристики которой соответствуют реальному волноводу в главном (порядок и время вступления нормальных волн в пределах диапазона частот, ограничивающего основную часть спектра сигнала) будем считать физически адекватной, если ограничиться только детер-

минированной функцией передачи $H(\omega)$. Воздействие случайных факторов можно учесть с помощью случайной функции $E(\omega)$, так что $H(\omega) = H(\omega)$: $E(\omega)$ [3].

Рассмотрим только детерминированную составляющую ККП. Будем представлять точечный источник в виде пульсирующей сферы малого волнового размера, тогда комплексную амплитуду акустического давления можно записать как

$$p = \frac{-i\omega \rho x}{4\pi R} \exp(-i\omega / c_1 R), \omega/c_1 R <<1,$$
 (1)

где c_1 – скорость звука в воде, x – объемная скорость источника, называемая ниже «сигнал». Записав выражение для акустического поля в волноводе как сумму мод, отнеся к нему (1), можно получить ККП волновода по акустическому давлению (полю) в виде

$$H_{p}(\omega) = i \sum_{l=1}^{\infty} A_{l} \sin(b_{l} z_{0}) \sin(b_{l} z) H_{0}^{(1)}(\xi_{l} r), \qquad (2)$$

где z_0 , z — глубина источника и приемника (переменная); b_l , ξ_l — вертикальное и горизонтальное волновые числа; A_l - коэффициент возбуждения мод. Волновые числа рассчитываются из дисперсионного уравнения, соответствующего модели волновода.

Кроме приемников акустического давления (гидрофонов), в последнее время получили развитие и приемники градиентов давления — датчики колебательной скорости, совместное применение которых с гидрофонами позволяет создавать комбинированные скалярно-векторные антенны [4].

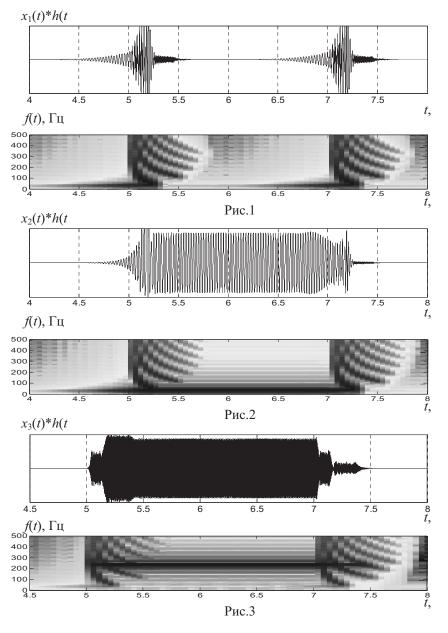
Комплексные коэффициенты передачи по горизонтальной и вертикальной составляющим колебательной скорости, учитывая связь p, v_r, v_z [3] следует определить как

$$H_{r}(\omega) = \frac{\partial H_{p}(\omega)}{\partial r} = -i\sum_{l=1}^{\infty} A_{l} \xi_{l} \sin(b_{l}z_{0}) \sin(b_{l}z) H_{1}^{(1)}(\xi_{l}r), \quad H_{z}(\omega) = \frac{\partial H_{p}(\omega)}{\partial z} = i\sum_{l=1}^{\infty} A_{l} b_{l} \sin(b_{l}z_{0}) \cos(b_{l}z) H_{0}^{(1)}(\xi_{l}r). \quad (3)$$

Импульсные характеристики $h_p(t)$, $h_r(t)$, $h_z(t)$ — результат обратного дискретного преобразования Фурье от соответствующих ККП (2), (3).

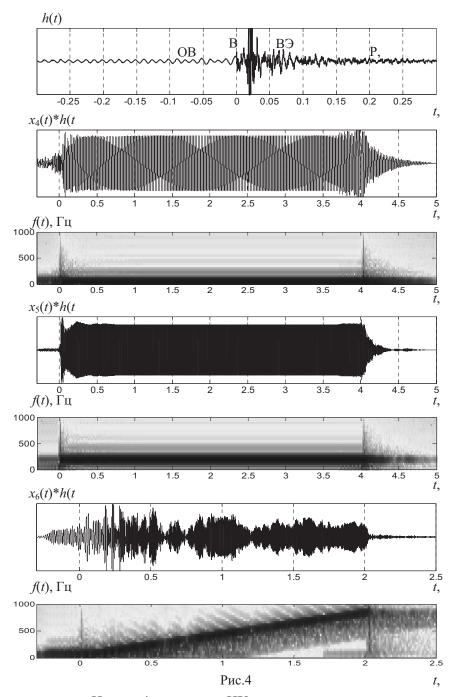
В более общем случае, волноводу-четырехполюснику имеющему M входов и N выходов соответствует матрица импульсных характеристик $\mathbf{h}(t) = (h_{ij}(t))$, где i = 1, 2...M, j = 1, 2...N, а элемент $h_{ij}(t)$ определяет связь между i-тым входом и j-тым выходом. Тогда вектор выходного сигнала можно вычислить как $\mathbf{y} = \mathbf{x} \otimes \mathbf{h}$, где $\mathbf{y} = (y_j)$, $\mathbf{x} = (x_i)$ — вектор-строка входного сигнала.

Ниже моделируется распространение сигналов в волноводе Пекериса с поглощающим дном. Модель волновода Пекериса состоит из областей «1» и «2»: водного слоя глубиной h и полупространства с плотностями ρ_1 =1033 кг/м³, ρ_2 =1900 кг/м³ и скоростями звука c_1 =1490 м/с, c_2 =1800 м/с соответственно, тангенс потерь 0.01. Источник и приемник давления расположены вблизи дна, расстояние между ними - r.

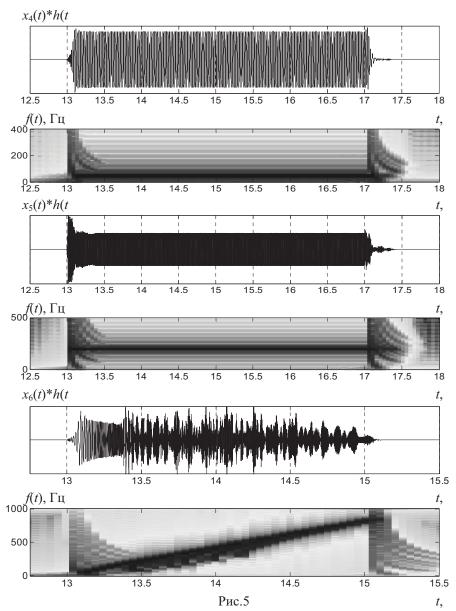

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис.1-3 показаны реализации и спектрограммы выходного сигнала при импульсном включении тонального источника $x(t)=\sin 2\pi ft$. Длительность импульса 2c, расстояние $r=5c_1$, кинематический момент вступления грунтовой волны ≈ 4.14 c, водной - 5 c.

На рис.1 частота источника f=30 Γ ц — немного меньше критической частоты 1-й моды (33 Γ ц). На спектрограмме видно «ударное» возбуждение большого количества мод в моменты включения и выключения источника, затем затухание сложного многочастотного процесса. Поскольку значительная доля энергии в спектре импульса сосредоточена в


окрестности критической частоты, возникает хорошо заметная на реализации грунтовая волна. Основная частота через волновод не проходит.

На рис.2 частота источника f=40 Γ ц, ниже критической для второй моды (101 Γ ц) — «одномодовый» сигнал. Грунтовая волна выражена значительно слабее, переходный процесс включения (ППВКЛ) - с плавно возрастающей частотой и амплитудой, с картиной биений вплоть до момента ≈ 5.3 с, когда устанавливается единая основная частота в двух каналах распространения сигнала — грунтовом и водном. ППВКЛ практически завершается примерно в момент ≈ 5.5 с, после затухания колебаний 2-й моды. Переходный процесс выключения (ППВЫКЛ) начинается с постепенного отключения канала грунтовой волны и возобновления биений. В момент =7с колебания обогащаются высокочастотными составляющими за счет «вспышки» спектра. В целом, на реализации и спектрограмме отчетливо прослеживается «сгон» низкочастотных компонент спектра в направлении «раньше», а высокочастотных — «позже».


На рис.3 – «трехмодовый» импульс с f=238 Γ ц – равной критической для 4-й моды. Здесь грунтовой волны практически нет (на реализации незаметна, слабо видна на спектрограмме вследствие высокой чувствительности процедуры). ППВКЛ и ППВЫКЛ имеют почти «кинематически» ступенчатый вид. На рис.2 и на рис.3 неискаженная часть импульса с установившейся амплитудой оказывается укороченной и задержанной.

Экспериментальной оценкой импульсной характеристики канала является сигнал

взрывного источника. На рис.4 показаны: ИХ волновода мелкого моря, выделенная из сигнала взрывного источника [5,6] (из спектра сигнала взрыва отфильтрована периодиче-

ская составляющая импульсов пульсации газового пузыря, во временной области из реализации сигнала взрыва вырезано вступление импульса ПГП), отклики волновода на тестовые сигналы и спектрограммы. На рис.5 — то же (исключая ИХ), но для модельного волновода с совпадающими параметрами. Глубина волновода h=84м, расстояние r=13 км, глубина моря в точках взрыва и приема \approx 84 м, глубина подрыва заряда и приема 50 м, период ПГП 40 мс [5,6]. В отличие от модельного, реальный волновод неизоскоростной, ось

ПЗК — на глубине 50 м, разница скоростей между осью и границами — 8-10 м/с. Скорость звука в грунте, вычисленная по разнице времен вступления грунтовой и водной волн - \approx 1560 м/с [6]. Критические частоты мод модельного волновода: 16, 48, 81, 113, 146 Гц.

На ИХ волновода обозначено: «OB» — опережающая волна, «BB» — водная волна, к моменту вступления которой привязано начало отсчета времени, «ВЭ» — волна Эйри, вступление которой почти совпадает с 3-им (неотфильтрованным) импульсом ПГП,

«ПГП, Р» - реверберационная помеха и слабые импульсы ПГП. Опережающая волна похожа на грунтовую, однако поскольку приведенная запись сделана не геофоном [5], «ОВ», вероятно, сформирована низкочастотными составляющими спектра импульса, распространяющимися по «крутым» лучевым траекториям, где скорость звука больше. Плавное вступления водной волны — следствие технического ограничения спектра. В водной волне можно различить два вступления волны Эйри — в моменты 0.065с и 0.12с, соответствующие минимумам групповой скорости двух мод. Следует обратить внимание, что импульсы в водной волне в результате сложения многих мод приобретают характерную остроконечную «лямбдообразную» форму с высокочастотным заполнением.

Сравнение переходных процессов при включении и выключении квазимонохроматических сигналов $x_4(t) = \sin(2\pi 50t)$, $x_5(t) = \sin(2\pi 200t)$ для модельного и реального волноводов показывает, что законы дисперсии более схожи в области высоких и менее – в области низких частот. Это объясняется наличием в реальном волноводе ПЗК и существованием опережающей волны, которой в модельном волноводе нет. На спектрограмме реального волновода видно ударное возбуждение мод, но визуально они не разделяются, на спектрограмме модельного – возбуждение мод неравномерное, 2-я мода практически отсутствует.

Отдельные моды возможно различить на реализации и спектрограмме свертки ИХ с ЛЧМ импульсом $x_6(t)=\sin(2\pi(50+200t)t)$ длительностью 2 с. Сжатые импульсы имеют классическую «колоколообразную» форму, наибольшую компрессию испытывает часть импульса, изменяющаяся в диапазоне частот 200-500 Гц.

ЗАКЛЮЧЕНИЕ

Свертка сигнала с импульсной характеристикой волновода является эффективным инструментом формирования опорных сигналов для корреляционного анализа. В волноводах с глубинами ≈ 100 м профиль скорости звука, а в особенности сформированный ПЗК уже оказывают заметное влияние на закон дисперсии мод, при этом низкочастотные составляющие спектра импульса, с большими углами скольжения эквивалентного луча могут существенно опережать высокочастотные.

ЛИТЕРАТУРА

- 1. Кебкал К.Г. Способ цифровой связи по многолучевым гидроакустическим каналам с применением частотно-модулированного несущего сигнала/ К.Г. Кебкал, А.Г. Кебкал, С.Г. Яковлев // Акуст. журн.- 2004.- Т.50.- №.2.- С.220-230.
- 2. Бреховских Л.М. Волны в слоистых средах/Л.М.Бреховских М.: Наука, 1973.- 343с.
- 3. Лаваль Р. Влияние неоднородностей и нестабильности среды на пространственную и временную обработку сигналов / Р. Лаваль, И. Лабаск // Подводная акустика и обработка сигналов / Под ред. Л. Бьёрнё –М.: Мир, 1985.-С.32-43.
- 4. Гордиенко В.А. Векторно-фазовые методы в акустике / В. А. Гордиенко, В. И. Ильичев, Л. Н. Захаров. М.: Наука, 1989. 223с.
- 5. База наблюдений сигналов взрывных источников в океане: http://www.akin.ru/spravka.htm
- 6. Вадов Р.А. Дальнее распространение звука в центральной части Балтийского моря/ Р.А. Вадов // Акуст. журн.- 2001.- Т.47.- №.2.- С.189-199.