ГАРМОНИЧЕСКИЕ ВОЛНЫ СДВИГА В РАВНОМЕРНО ВРАЩАЮЩЕМСЯ ПЬЕЗОКЕРАМИЧЕСКОМ СЛОЕ С ПРОДОЛЬНОЙ ПОЛЯРИЗАЦИЕЙ

И. А. УЛИТКО, А. В. БОРИСЕЙКО

Киевский национальный университет им. Тараса Шевченко ул. Владимирская, 64, 01033, Киев-033, Украина тел. (044) 259-03-07; e-mail: ulitko@univ.kiev.ua

Изучаются связанные электроупругие колебания сдвигового типа в пьезокерамическом слое, который находится в свободном вращательном движении вокруг оси, перпендикулярной к его электродированным граням. Дисперсионные решения для перемещений и напряжений подчинены законам кориолисовой дисперсии упругих волн, что приводит к эллиптической плоской поляризации колебаний. Получены асимптотические формулы для перемещений и напряжений при малых угловых скоростях вращения слоя, типичных для датчиков угловой скорости, даны формулы для расчета частот колебаний в зависимости от величины угловой скорости.

ВВЕДЕНИЕ

Практический интерес к теоретическому изучению эффектов кориолисовой дисперсии, поляризации и модуляции упругих колебаний и волн во вращающихся упругих телах вызван потребностями разработки различных типов твердотельных волновых гироскопов. Одним из перспективных направлений в теории волновых гироскопов являются гироскопические сенсоры на объемных акустических волнах [1], теоретические модели которых основываются на решениях граничных задач для упругих и электроупругих слоя и полупространства, находящихся во вращательном движении [2].

В представленном докладе исследуются связанные электроупругие колебания сдвигового типа, распространяющиеся в пьезокерамическом слое между его плоскими электродированными гранями, когда слой находится в свободном вращательном движении. Предполагаемая продольная (в срединной плоскости) поляризация пьезокерамики в случае сплошных электродов и однородного внешнего электрического поля позволяют реализовать случай однородного плоского напряженного состояния в слое и распространения стационарных волн сдвига по его толщине. За счет вращательного движения слоя уравнения колебаний являются связанными не только электромеханически, по функции электрического потенциала ψ , но также и по ускорениям Кориолиса, что в свою очередь приводит к дисперсионным решениям в виде линейной суперпозиции электромеханически связанных и несвязанных волн сдвига.

1 ПОСТАНОВКА ЗАДАЧИ

При выводе уравнений движения слоя с продольной поляризацией (см. рис. 1) будем исходить из предположения, что на его плоских лицевых гранях $z=\pm h$ отсут-

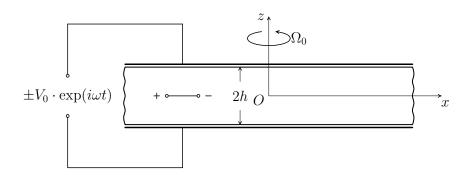


Рис. 1. Равномерно вращающийся пьезокерамический слой

ствуют какие-либо механические напряжения.

$$\sigma_z|_{z=\pm h} = 0, \qquad \tau_{zy}|_{z=\pm h} = 0, \qquad \tau_{zx}|_{z=\pm h} = 0.$$
 (1)

Предполагаем, что возбуждение колебаний осуществляется посредством гармонического генератора электрических напряжений с круговой частотой ω

$$E_z|_{z=\pm h} = \pm \frac{V_0}{h} \exp(i\omega t), \qquad E_x = 0, \qquad E_y = 0,$$
 (2)

где V_0 — значение потенциала на электроде, h — половина толщины слоя. За счет того, что плоские лицевые грани $z=\pm h$ полностью покрыты электродами, отличной от нуля является только толщинная компонента напряженности поля E_z . Элементарный анализ уравнений пьезоэффекта для этого типа поляризации [3] при отсутствии каких-либо механических сил (1) и при условиях электрического нагружения (2) свидетельствует, что механическое напряженное состояние слоя будет характеризоваться однородными по координатам срединной плоскости x, y касательными напряжениями τ_{xz} и τ_{yz} , причем напряжения в направлении поляризации керамики будут эквивалентны разности приложенных потенциалов $\tau_{xz} \sim -e_{15}V_0/h$. Так как что ось вращения слоя Oz не изменяет своего положения в пространстве, упругие перемещения также характеризуются однородными по по координатам x, y компонентами $u_x(z,t)$ и $u_y(z,t)$. Компоненту перемещений $u_z(z,t)$ в проекции на ось вращения Oz, которая не испытывает влияния сил инерции вращательного движения, из дальнейшего рассмотрения исключим. В силу этих предположений соотношения линейной теории электроупругости для случая плоского напряженного состояния запишутся в виде

$$\varepsilon_{xz} = \frac{\partial u_x}{\partial z}, \qquad \varepsilon_{yz} = \frac{\partial u_y}{\partial z}, \qquad E_z = -\frac{\partial \psi}{\partial z},
\tau_{xz} = c_{44}^E \frac{\partial u_x}{\partial z} + e_{15} \frac{\partial \psi}{\partial z}, \qquad \tau_{yz} = \frac{c_{11}^E - c_{12}^E}{2} \frac{\partial u_y}{\partial z}, \qquad D_z = -\epsilon_S^{11} \frac{\partial \psi}{\partial z} + e_{15} \frac{\partial u_x}{\partial z}$$
(3)

Здесь c_{11}^E c_{12}^E c_{44}^E – упругие постоянные, e_{15} – пьезопостоянная, ϵ_S^{11} – диэлектрическая проницаемость керамики. Характеризуя неучтенные здесь компоненты связанного поля, отметим, что тождественно обращаются в ноль механические напряжения τ_{xy} и индукция D_y , рассчитанные по координатам срединной плоскости x,y. Нормальные напряжения σ_x , σ_y , σ_z будут отличными от нуля и будут зависеть от осевой деформации

 ε_z , т.е. перемещений $u_z(z,t)$, исключенных из рассмотрения. Также зависящей от деформации ε_z является компонента электрической индукции D_x , для которой предусмотрим условие: $D_x \to 0, x \to \infty$.

Касательные напряжения τ_{zx} , τ_{zy} и индукция D_z из (3) необходимо удовлетворяют уравнениям движения Ньютона и уравнению вынужденной электростатики [3]. После очевидных преобразований получим систему трех связанных уравнений относительно упругих перемещений $u_x(z,t)$, $u_y(z,t)$ и функции потенциала ψ

$$c_{44}^{E} \frac{\partial^{2} u_{x}}{\partial z^{2}} + e_{15} \frac{\partial^{2} \psi}{\partial z^{2}} = \rho(\ddot{u}_{x} - \Omega_{0}^{2} u_{x} - 2\Omega_{0} \dot{u}_{y}),$$

$$\frac{c_{11}^{E} - c_{12}^{E}}{2} \frac{\partial^{2} u_{y}}{\partial z^{2}} = \rho(\ddot{u}_{y} - \Omega_{0}^{2} u_{y} - 2\Omega_{0} \dot{u}_{x}),$$

$$\epsilon_{11}^{S} \frac{\partial^{2} \psi}{\partial z^{2}} = e_{15} \frac{\partial^{2} u_{x}}{\partial z^{2}}.$$

$$(4)$$

В уравнениях колебаний вращающегося слоя (4) через Ω_0 обозначена угловая скорость вращения вокруг оси Oz, а при записи сил инерции в правых частях исключены статические слагаемые от центробежных сил. Эти уравнения являются связанными между собой не только по второй производной от функции потенциала ψ но и по компонентам ускорений Кориолиса $2\Omega_0\dot{u}_x$, $2\Omega_0\dot{u}_y$. Подставляя выражение для $\partial^2\psi/\partial z^2$ из третьего уравнения в первое, получим

$$\frac{\partial^2 u_x}{\partial z^2} = \frac{1}{c_{2,1}} (\ddot{u}_x - \Omega_0^2 u_x - 2\Omega_0 \dot{u}_y),
\frac{\partial^2 u_y}{\partial z^2} = \frac{1}{c_{2,2}} (\ddot{u}_y - \Omega_0^2 u_y - 2\Omega_0 \dot{u}_x).$$
(5)

Для коэффициента электромеханической связи k_{15}^2 , скорости связанной электроупругой волны сдвига в направлении оси поляризации пьезокерамики $c_{2,1}$, скорости упругой несвязанной волны сдвига в направлении, перпендикулярном к направлению поляризации $c_{2,2}$, здесь введены обозначения:

$$k_{15}^2 = \frac{e_{15}^2}{\epsilon_{11}^S c_{44}^E}, \qquad c_{2,1} = \sqrt{\frac{c_{44}^E}{\rho} (1 + k_{15}^2)}, \qquad c_{2,2} = \sqrt{\frac{1}{2} \frac{c_{11}^E - c_{12}^E}{\rho}}.$$
 (6)

2 РЕШЕНИЕ. ДИСПЕРГИРУЮЩИЕ ГАРМОНИЧЕСКИЕ ВОЛНЫ

Общее решение связанных уравнений колебаний (5) следует искать в виде

$$u_x(z,t) = \hat{u}_x(z) \exp(i\omega t), \qquad u_y(z,t) = \hat{u}_y(z) \exp(i\omega t),$$

$$\hat{u}_x(z) = A_1^+ \exp(ik_1 z) + A_2^+ \exp(ik_2 z) + A_1^- \exp(-ik_1 z) + A_2^- \exp(-ik_2 z), \qquad (7)$$

$$\hat{u}_y(z) = B_1^+ \exp(ik_1 z) + B_2^+ \exp(ik_2 z) + B_1^- \exp(-ik_1 z) + B_2^- \exp(-ik_2 z),$$

где волновые числа k_1 и k_2 вычисляются по формулам

$$k_{1,2} = \sqrt{\frac{1+\varepsilon^2}{2} \left(\frac{\omega^2}{c_{2,1}^2} + \frac{\omega^2}{c_{2,2}^2}\right)} \cdot \sqrt{1 \mp \sqrt{1 - \frac{4c_{2,1}^2 c_{2,2}^2}{(c_{2,1}^2 + c_{2,2}^2)^2} \left(\frac{1-\varepsilon^2}{1+\varepsilon^2}\right)^2}}.$$
 (8)

Здесь $\varepsilon=\Omega_0/\omega$ — нормированная угловая скорость вращения слоя. Величины k_1 и k_2 по форме совпадают с корнями ранее изученного дисперсионного уравнения для плоских гармонических волн, распространяющихся перпендикулярно к оси вращения в неограниченной упругой среде [4]. Вполне естественно, что исследуемые здесь сдвиговые волны в пьезокерамическом слое подчинены тем же математическим закономерностям кориолисовой дисперсии волн. Зависимость волновых чисел k_1 и k_2 и соответствующих им фазовых скоростей волн от угловой скорости вращения $\varepsilon=\Omega_0/\omega$ будет такой же, как и для соответствующих корней дисперсионного уравнения в неограниченной среде. В частности, в гипотетическом случае $\varepsilon=1$ волновое число k_2 (знак минус во внутреннем радикале) обращается в ноль, $k_2=0$, что приводит к вырождению соответствующих амплитудных слагаемых в общем решении (7). Отметим, что при $\varepsilon\to0$ волновое число $k_2\sim\omega/c_{2,1}$ идентифицируется как волновое число связанной электроупругой волны сдвига, а волновое число $k_1\sim\omega/c_{2,2}$ (знак плюс во внутреннем радикале) — как волновое число несвязанной сдвиговой волны. При малых значениях $\varepsilon<<1$ имеют место асимптотические формулы

$$k_2 \simeq \frac{\omega}{c_{2,1}} \left[1 - \frac{1}{2} \varepsilon^2 \frac{c_{2,2}^2 + 3c_{2,1}^2}{c_{2,1}^2 - c_{2,2}^2} \right], \qquad k_1 \simeq \frac{\omega}{c_{2,2}} \left[1 + \frac{1}{2} \varepsilon^2 \frac{c_{2,1}^2 + 3c_{2,2}^2}{c_{2,1}^2 - c_{2,2}^2} \right], \tag{9}$$

так что значения волновых чисел при малых угловых скоростях являются близкими к соответствующим значениям, определенным для неподвижного пьезокерамического слоя, отличаясь от них на величины порядка ε^2 .

Подчиняя решение (7) механическим (1) и электрическим (2) граничным условиям, в итоге получаем

$$u_{x} = \frac{e_{15}}{c_{44}^{E}} \frac{V_{0}}{h} \frac{1}{k_{1}^{2} - k_{2}^{2}} \left\{ \left[k_{1}^{2} - \frac{\omega^{2}}{c_{2,2}^{2}} (1 + \varepsilon^{2}) \right] \frac{\cos(k_{1}z)}{k_{1} \cos(k_{1}h)} - \left[k_{2}^{2} - \frac{\omega^{2}}{c_{2,2}^{2}} (1 + \varepsilon^{2}) \right] \frac{\cos(k_{2}z)}{k_{2} \cos(k_{2}h)} \right\} \times \cos \omega t,$$

$$u_{y} = \frac{e_{15}}{c_{44}^{E}} \frac{V_{0}}{h} 2i\varepsilon \frac{\omega^{2}}{c_{2,2}^{2}} \frac{1}{k_{1}^{2} - k_{2}^{2}} \left\{ \frac{\cos(k_{1}z)}{k_{1} \cos(k_{1}h)} - \frac{\cos(k_{2}z)}{k_{2} \cos(k_{2}h)} \right\} \times \sin \omega t,$$

$$\tau_{zx} = e_{15} \frac{V_{0}}{h} \left\{ 1 \mp \frac{1}{k_{1}^{2} - k_{2}^{2}} \left[\left(k_{1}^{2} - \frac{\omega^{2}}{c_{2,2}^{2}} (1 + \varepsilon^{2}) \right) \frac{\sin(k_{1}z)}{\sin(k_{1}h)} - \left(k_{2}^{2} - \frac{\omega^{2}}{c_{2,2}^{2}} (1 + \varepsilon^{2}) \right) \frac{\sin(k_{2}z)}{\sin(k_{2}h)} \right\} \times \cos \omega t,$$

$$\tau_{zy} = -\frac{c_{11}^{E} - c_{12}^{E}}{2c_{44}^{E}} e_{15} \frac{V_{0}}{h} 2i\varepsilon \frac{\omega^{2}}{c_{2,2}^{2}} \frac{1}{k_{1}^{2} - k_{2}^{2}} \left\{ \frac{\sin(k_{1}z)}{\sin(k_{1}h)} - \frac{\sin(k_{2}z)}{\sin(k_{2}h)} \right\} \times \sin \omega t,$$

$$(11)$$

Как следует из формул (10)–(11) волновое движение в пьезокерамическом слое с продольной поляризацией характеризуется линейной комбинацией диспергирующих электромеханически связанных (k_2) и несвязанных (k_1) сдвиговых волн, которые распространяются между его плоскими электродированными гранями $-h \le z \le h$. Траекториями движения частиц слоя на связанных перемещениях u_x и u_y в плоскости z = const являются эллипсы с полуосями, равными амплитудным функциям при $\cos \omega t$ и $\sin \omega t$. Направление движения частиц на эллиптических траекториях относительно направления вращения изменяется по толщине $-h \le z \le h$, оно определяется знаками амплитуд

перемещений и было детально изучено в работе [2]. Отметим что взятые по отдельности выражения для $u_x(z,t)$ либо $u_y(z,t)$ физического смысла в данной задаче не имеют.

Как и следовало ожидать, касательные напряжения в направлении поляризации τ_{zx} характеризуются линейной компонентой $e_{15} \cdot V_0/h$ не зависящей от толщинной координаты z. Знак минус в выражении для τ_{zx} берется при z < 0, знак плюс при z > 0. На поверхностях слоя $z = \pm h$ оба напряжения обращаются в ноль, а максимальные значения τ_{zx} достигаются при z = 0, в срединной плоскости слоя. В поведении волн напряжений (11) наблюдаются аналогичные закономерности (следует рассматривать обе компоненты τ_{zx} , τ_{zy} совместно).

Для анализа характера полученного решения (10)–(11) запишем асимптотические формулы при малых значениях угловой скорости вращения $\varepsilon = \Omega_0/\omega << 1$. Для этого следует использовать асимптотические формулы для волновых чисел k_1, k_2 (9), учитывающие их изменения с точностью до ε^2 . Проводя асимптотические преобразования перемещений (10) по степеням малого параметра ε , в их амплитудах будем учитывать слагаемые порядка ε и ε^2 , но пренебрегать слагаемыми порядка $\varepsilon^3, \varepsilon^4, \ldots$; в аргументах быстро осциллирующих функций $\sin k_{1,2}z$, $\cos k_{1,2}z$ величинами порядка ε^2 также можно пренебречь. В итоге получаем

$$\frac{u_x^{\text{ac}}}{h} \simeq \frac{e_{15}}{c_{44}^{E}} \frac{V_0}{h} \left\{ \frac{\cos\left(\frac{\omega z}{c_{2,1}}\right)}{\left(\frac{\omega h}{c_{2,1}}\right) \sin\left(\frac{\omega h}{c_{2,1}}\right)} + \left(\frac{\Omega_0}{\omega}\right)^2 \left[\frac{4c_{2,1}^2 c_{2,2}^2}{(c_{2,1}^2 - c_{2,2}^2)^2} \frac{\cos\left(\frac{\omega z}{c_{2,2}}\right)}{\left(\frac{\omega h}{c_{2,2}}\right) \sin\left(\frac{\omega h}{c_{2,2}}\right)} - \frac{1}{2} \left[\frac{(c_{2,1}^2 + c_{2,2}^2)^2}{(c_{2,1}^2 - c_{2,2}^2)^2} - 4\frac{c_{2,1}^4 - 2c_{2,1}^2 c_{2,2}^2}{(c_{2,1}^2 - c_{2,2}^2)^2} \right] \frac{\cos\left(\frac{\omega z}{c_{2,1}}\right)}{\left(\frac{\omega h}{c_{2,1}}\right) \sin\left(\frac{\omega h}{c_{2,1}}\right)} \right\} \times \cos \omega t, \quad (12)$$

$$\frac{u_x^{\text{ac}}}{h} \simeq 2\frac{\Omega_0}{\omega} \frac{e_{15}}{c_{44}^E} \frac{V_0}{h} \frac{c_{2,1}^2}{c_{2,1}^2 - c_{2,2}^2} \left[\frac{\cos\left(\frac{\omega z}{c_{2,2}}\right)}{\left(\frac{\omega h}{c_{2,2}}\right) \sin\left(\frac{\omega h}{c_{2,2}}\right)} - \frac{\cos\left(\frac{\omega z}{c_{2,1}}\right)}{\left(\frac{\omega h}{c_{2,1}}\right) \sin\left(\frac{\omega h}{c_{2,1}}\right)} \right] \times \sin \omega t,$$

Из этих асимптотических формул видно, что основной вклад в амплитуду перемещений вносит не зависящее от угловой скорости Ω_0 слагаемое в компоненте u_x в виде связанной гармонической сдвиговой волны (скорость $c_{2,1}$ в аргументе cos), которое представляет собой элементарной решение для перемещений u_x в случае неподвижного слоя, $u_y \equiv 0$ при $\Omega_0 = 0$. Это основное слагаемое слабо искажается слагаемым второго порядка малости $(\Omega_0/\omega)^2$ в виде суммы электромеханически связанной $c_{2,1}$ и не связанной $c_{2,2}$ волн. Перемещения u_y по величине являются существенно меньшими от перемещений u_x . Оба слагаемых связанной и несвязанной сдвиговых волн имеют порядок малости Ω_0/ω , т.е. перемещения u_y оказались прямо пропорциональными значению угловой скорости вращения. Этот результат может быть использован при разработке датчиков угловой скорости вращения. Асимптотические формулы для напряжений записываются аналогично.

3 РЕЗОНАНСНЫЕ ЧАСТОТЫ

Из решения (10)–(11) следует, что резонансные колебания слоя имеют место тогда, когда знаменатели в амплитудах перемещений и напряжений обращаются в ноль: $\sin k_1 h = 0$, $\sin k_2 h = 0$. Этим определяются две последовательности волновых чисел $k_1^{(n)} = (n\pi)/h$ и $k_2^{(m)} = (m\pi)/h$, $(n,m=0,1,2\ldots)$, причем каждой из них соответствует по две последовательности резонансных частот колебаний $\omega_{1,2}^{(n)}$ и $\omega_{1,2}^{(m)}$, которые получаются из решения биквадратных частотных уравнений, в общем случае – четыре серии частот. Например, когда $\Omega_0 < (n\pi/h)c_{2,2}$ либо $\Omega_0 > (n\pi/h)c_{2,1}$ значения $\omega_{1,2}^{(n)}$ находятся в виде

$$\omega_{1,2}^{(n)} = c_{2,2} \frac{n\pi}{h} \sqrt{\frac{c_{2,1}^2 + c_{2,2}^2}{2c_{2,2}^2} + \epsilon_n^2} \sqrt{1 \pm \sqrt{1 - \frac{4c_{2,1}^2 c_{2,2}^2}{(c_{2,1}^2 + c_{2,2}^2)^2} \frac{\left(1 - \frac{c_{2,2}^2}{c_{2,1}^2} \epsilon_n^2\right) \left(1 - \epsilon_n^2\right)}{\left(1 + \frac{2c_{2,2}^2}{c_{2,1}^2 + c_{2,2}^2} \epsilon_n^2\right)^2}},$$
 (13)

где для нормированной угловой скорости введено обозначение $\epsilon_n=(n\pi)^{-1}h\Omega_0/c_{2,2}$. При этом частоты $\omega_1^{(n)}$ (знак плюс во внутреннем радикале) являются резонансными частотами электромеханически связанных сдвиговых колебаний, а $\omega_2^{(n)}$ (знак минус во внутреннем радикале) — резонансными частотами электромеханически несвязанных сдвиговых колебаний. Следует отметить, что для угловых скоростей вращения в интервале $(n\pi/h)c_{2,2}<\Omega_0<(n\pi/h)c_{2,1}$ частоты $\omega_2^{(n)}$ становятся чисто мнимыми. Это свидетельствует, что резонансные колебания вращающегося пьезокерамического слоя могут характеризоваться не только гармоническими слагаемыми, но и слагаемыми с экспоненциальным затуханием во времени. Однако элементарный расчет показывает, что такое аномальное экспоненциальное поведение функций решения во времени для слоя толщины 2h=1 см возможно лишь при значениях $\Omega_0\sim 10^6$ об/с и в практическом применении датчиков угловой скороти наблюдаться не будет.

ЛІТЕРАТУРА

- 1. Сарапулов С. А., Улитко И. А. Влияние вращения на объемные волны в упругой среде и их использование в твердотельной гироскопии // Гироскопия и навигация.— 2001.— **35**, N 4.— С. 64—72.
- 2. *Борисейко О. В., Малик А. М., Улітко І. А.* Гармонічні хвилі зсуву в пружному шарі, який рівномірно обертається // Вісник Київ. ун-ту. Сер.: Математика і механіка.— 2004.—11-12.—C. 105-110.
- 3. *Гринченко В. Т., Улитко А. Ф., Шульга Н. А.* Электроупругость. К: Наукова Думка: 1989, 279.
- 4. *Улитко И. А.* Дисперсия проских гармонических волн в равномерно вращающемся упругом пространстве // Доклады НАН Украины.— 1995.— N 1.— C. 54–57.