ВОЗМОЖНОСТИ ВЫЯВЛЕНИЯ И ОЦЕНОК МЕТАНОВЫХ ГАЗОВЫДЕЛЕНИЙ НА ШЕЛЬФЕ ЧЁРНОГО МОРЯ МЕТОДАМИ АКУСТИЧЕСКОГО ЛУЧЕВОГО ЗОНДИРОВАНИЯ

В.К. БОГУШЕВИЧ, Л.Н. ЗАМАРЕНОВА, М.И. СКИПА

Отделение гидроакустики МГИ НАН Украины, г. Одесса, Украина

Рассмотрены вопросы аномалии скорости звука и ее частотной зависимости в среде с пузырьками, изменения размера пузырька и состава пузырьков газовыделения при всплытии, оценивания их характеристик при многочастотном зондировании, выявления и оценок донных газовыделений на шельфе методом лучевого зондирования, достигаемых характеристик систем.

введение

В Чёрном море регулярно проводятся работы по поиску и исследованиям газовыделений из дна, направленные на решение экологических и гидрохимических задач, поиск газовых месторождений. Основными вопросами диагностики газовыделений являются определение их размеров, интенсивности и размерного состава пузырьков. Для этих целей в первую очередь используются эхолоты и гидролокаторы. Однако использование таких средств имеет ряд существенных недостатков и не обеспечивает однозначности эхолокационных оценок [1]. Для улучшения диагностики газовыделений предлагается метод акустического горизонтального лучевого зондирования (прозвучивания), при котором звук проходит через область газовыделения. Лучевое зондирование лишено недостатков эхолокации, позволяет использовать более низкие частоты и увеличивать расстояния до наблюдаемых газовыделений. Однако практическая реализация метода в условиях мелкого моря связана с серьёзными трудностями. Рассмотрению вопросов акустического лучевого зондирования и возможностей выявления и оценивания газовыделений на шельфе и посвящена эта работа.

1 ВЫЯВЛЕНИЕ И ОЦЕНИВАНИЕ ДОННЫХ ГАЗОВЫДЕЛЕНИЙ

Пузырьки газовыделений меняют характеристики морской среды – скорость распространения звуковых волн c и их затухание β . Эти изменения будут приводить к изменениям времени распространения сигнала и его уровня. При лучевом зондировании проще измерять аномалию времени распространения ΔT , что позволяет определять аномалию скорости звука Δc . В условиях пересечения газовыделения несколькими лучами на разных глубинах, измеряя характеристики распространения ΔT_m и оценивая Δc , можно выявлять газовыделения и определять их интенсивность, газосодержание τ_N (объемная доля газа) и размерный состав пузырьков. Аномалия скорости звука Δc определяется частотой зондирующего сигнала f_c , резонансной частотой пузырьков f_R (зависящей от их радиусов a и глубины нахождения z), и газосодержание τ_N [2]:

$$\Delta c(f) = c - c_0 = -7, 3 \cdot 10^3 \cdot c_0 \cdot \tau_N \cdot (1 - f_c / f_R) / [(1 - f_c^2 / f_R^2)^2 + \Delta^2 (f_c^2 / f_R^2)], \quad (1)$$

где $f_R = (3, 26 / a) \sqrt{1 + 0, 1 \cdot z}$, Δ - постоянная затухания.

Кривая, описываемая выражением (1), показана на рис. 1(а). Если спектр размеров пузырьков широкий, N_i / N , рис. 1(б), то каждый из размеров в соответствии со своим

газосодержанием τ_{Ni} формирует свою кривую $\Delta c_i(f) = F(\tau_{Ni})$. Совокупность пузырьков разных размеров формирует итоговую

Зная газосодержание $\tau_N = \sum \tau_{Ni}$ и размерный состав пузырьков N_i / N , можно рассчитать аномалию скорости звука $\Delta c(f)$. Но можно решать и обратную задачу – по измеренной аномалии $\Delta c(f)$ *τ*_N и размерный состав определять Согласно (1), на пузырьков. низких частотах $(f_c \ll f_{Ri}), \Delta c_0 = -7, 3 \cdot 10^3 \cdot c_0 \cdot \tau_N,$ позволяет определять $au_{\scriptscriptstyle N}$ вне что зависимости от размеров пузырьков f_{Ri} . Для этого нужно измерить Δc при частоте сигнала в 3...5 раз меньшей, чем наименьшая резонансная частота пузырьков. Для определения размерного состава пузырьков нужно определить используя зависимость $\Delta c(f),$ зондирование нескольких (5...7)на частотах.

кривую $\Delta c(f) = \sum \Delta c_i(f)$ (рис. 1(в)).

Во многих случаях газосодержание *т*_N можно измерить на одной глубине. Характеристику аномальности $\Delta c(f)$ тоже можно определять только на некоторых глубинах. Поэтому для оценки изменений характеристик газовыделения по глубине необходимо знать зависимости изменения с глубиной размеров пузырьков. Размер пузырька а при его всплытии

увеличивается за счёт уменьшения гидростатического давления и уменьшается за счёт диффузии и растворения, определяемых процессами массопереноса при движении. Интенсивность массообмена одиночного пузырька характеризуется выражением [3, 4]:

$$j = 4\pi a^2 \cdot D \cdot (C_n - C_\infty) / \delta$$

где D – коэффициент диффузии газа в воде; C_n и C_{∞} – концентрация диффундирующего вещества на поверхности пузырька и вдали от него. Толщина концентрационного погранслоя δ определяет зависимость интенсивности массообмена от скорости всплытия пузырька и режима его обтекания потоком. Для каждого диапазона размеров *a* и скоростей υ получены решения, позволяющие находить δ и решать задачу массообмена и изменения размера пузырька. Изменение размера всплывающего пузырька зависит от многих начальных условий: начального радиуса, a_H , начального значения глубины, z_H , характера газовыделения, скорости вертикального потока воды, распределения по глубине фоновых концентраций выделяющегося из дна газа, кислорода, азота и других

газов, обеспечивающих обратную диффузию в пузырёк, профиля температуры воды, характера и степени загрязнения поверхности пузырька и воды. Большинство указанных условий учтено в программе расчётов изменения размера всплывающего пузырька, разработанной в ОГА МГИ НАНУ [1]. Возможность рассчитывать изменения размера всплывающего пузырька позволяет оценивать изменение с глубиной состава пузырьков и газосодержания τ_N . Результаты расчётов изменения размерного состава пузырьков [1] для случаев начальных размеров 1,5...4,0 мм и 0,3...0,6 мм и изменения глубин с 90 м до 60 м и с 55 м до 45 м приведены на рис. 2а и 26 – кривые 1 и 2. При этом газосодержание τ_N увеличивается в 1,23 раза в первом случае и уменьшается в ~ 10 раз – во втором.

Все газовыделения с определенным приближением можно отнести к пяти типам [5]: 1. Мощный факел: L=30-60 м, $\tau_N = (20-60)\cdot 10^{-6}$, $\Delta c_0 = 220-660$ м/с, $L\Delta c = (6,8-40,9)\cdot 10^3$ м²/с; 2. Средний факел: L=10-30 м, $\tau_N = (5-20)\cdot 10^{-6}$, $\Delta c_0 = 55-220$ м/с, $L\Delta c = 568-6810$ м²/с; 3. Участок струй: L=5-20м, $\tau_N = (0,5-5)\cdot 10^{-6}$, $\Delta c_0 = 5,5-55$ м/с, $L\Delta c = 28,4-1135$ м²/с; 4. Участок факелов: L=100-200 м, $\tau_N = 0,5\cdot 10^{-6}$, $\Delta c_0 = 5,5$ м/с, $L\Delta c = 568-1135$ м²/с; 5. Район факелов: L=300-1000 м, $\tau_N = 0,22\cdot 10^{-6}$, $\Delta c_0 = 2,4$ м/с, $L\Delta c = 749-2497$ м²/с. Возможности выявления и анализа этих газовыделений и рассматриваются ниже.

2 ИМПУЛЬСНО-ЛУЧЕВОЕ ЗОНДИРОВАНИЕ В МЕЛКОВОДНЫХ РАЙОНАХ

Идея акустического мониторинга состоит в использовании информации о распространении звука для получения информации о характеристиках среды. Изменение характеристик среды меняет поле скорости звука, что изменяет и акустическое поле, его фазовые, амплитудные и временные соотношения. Наиболее полно задача акустического мониторинга решается в случае акустической томографии, когда восстанавливается поле скорости звука c(x, y, z, t). При лучевом подходе к решению задачи восстановления поля в качестве измеряемых величин берутся времена распространения сигналов по лучам. Аномалия времени прихода, обусловленная флуктуацией поля скорости звука, Δc , равна

$$\Delta T_m = \int_{\Gamma_m} (c_0 + \Delta c)^{-1} ds - \int_{\Gamma_m^0} c_0^{-1} ds, \quad m = 1, \dots, M,$$
(2)

где $c_0(x, y, z)$ – известное «опорное» состояние поля, $\Delta c(x, y, z, t) = c(x, y, z, t) - c_0(x, y, z)$, s – расстояние по лучу. Здесь Γ_m^0 – опорный луч, соединяющий излучатель и приёмник в среде с $c = c_0$, а Γ_m – луч в реальной среде с $c = c_0 + \Delta c$. Соотношения (2) образуют систему из M интегральных уравнений относительно неизвестной функции $\Delta c(x, y, z)$, которую и требуется найти по измеренным ΔT_m .

Задача инверсии (2) сложна. Ее можно упростить путём дискретизации и линеаризации [6]. При линеаризации, полагая $\Delta c/c_0 << 1$ и полагая малым отличие траекторий Γ_m и Γ_m^0 , выражение для ΔT_m , в линеаризованном по Δc виде, записывают

$$\Delta T_m \approx -\int_{\Gamma_m^0} c_0^{-2} \Delta c ds, \quad m = 1, \dots, M .$$
(3)

При дискретизации флуктуационного поля Δc среда разбивается на ячейки, n = 1, ..., N. В пределах ячейки флуктуация Δc в простейшем случае принимается постоянной, δc_n . Дальнейшее упрощение задачи получается в случае неоднородностей ограниченного размера. При этом аномалия поля Δc вне области неоднородности принимается равной нулю. Задача восстановления Δc упрощается еще, если размеры неоднородности малы по сравнению с длиной цикла луча или разницей глубин точек его заворота. В этом случае фрагмент траектории *m*-го луча через область аномалии можно аппроксимировать прямой линией. В простейшем случае неоднородностей, у которых в пределах меньшего размера $\delta c_{ni} \approx const$, задача восстановления становится элементарной

$$\Delta T_m \approx -S_{am} \cdot \delta c_{ni} / \langle c_{0am}^2 \rangle, \tag{4}$$

где S_{am} – длина аномального участка *m*-й траектории.

Последние упрощения определяют переход от общей задачи томографии к частной, но актуальной задаче лучевого зондирования локальных неоднородностей. Идея метода акустического лучевого зондирования локальных неоднородностей состоит в использовании коротких зондирующих сигналов и анализе временных соотношений сигналов, приходящих по разным лучам [5, 7]. Зная исходную временную структуру принимаемого сигнала, по изменению положения на временной оси сигналов лучей, можно определить те траектории, которые пересекают область с аномальными значениями скорости звука. А, зная эти «аномальные" траектории и их положение в пространстве, можно определить положение и размер неоднородности. Величину аномальности неоднородности можно установить по аномальности времени распространения сигналов и длине аномальных участков их траекторий.

Возможности выявления и оценивания газовыделений в мелком море методами лучевого зондирования, в первую очередь, определяются такими вопросами, как устойчивость лучевой и временной структур и идентификация лучей, раздельный прием сигналов лучей, пространственное и временное разрешение и дальность, рассеяние на неоднородностях и «толщина» луча, величина аномальности неоднородности и ее размер.

Идентификация лучей, устойчивость лучевой и временной структур. Большие изменения в профиле C3 и его градиенте в случае мелководных, 30...50 м, районов обуславливают неоднозначность структуры звукового поля (несколько траекторий с одинаковым числом циклов N, но разными глубинами заворота z_m и временами прихода

 T_m) и ее неустойчивость, т.е. исчезновение существовавших лучей и появление новых при незначительных изменениях поля c_0 или его аномалии Δc . Это усложняет задачу идентификации лучей и ставит под вопрос саму возможность лучевого зондирования. Реализация лучевого зондирования возможна при глубинах более 50...70 м, когда нижняя ветвь профиля C3 обретает монотонность с постепенным уменьшением градиента. В этом случае траектории, заворачивающие в этой области глубин, становятся однозначными и устойчивыми к малым вариациям c_0 и Δc .

Пространственное и временное разрешение, раздельный прием сигналов и дальность. Пространственное разрешение определяется плотностью лучевых траекторий и их числом. Увеличение пространственного разрешения приводит к уменьшению временных интервалов ΔT_p между сигналами лучей, что по условиям их раздельного приема требует увеличения полосы частот $F_c > 1/\Delta T_p$ (и будет приводить к увеличению временного разрешения $\sigma_\tau \sim 1/F_c$) и частоты сигнала f_c , $F_c \approx (0, 2...0, 3) f_c$ и приводит к уменьшению дальности r [7]. Раздельный прием сигналов легче обеспечить в случае равномерности интервалов ΔT_p между ними. Задача равномерности интервала решается за счет оптимального выбора глубин размещения излучателя и приёмника [7]. Расчеты показывают, что в условиях ПЗК, $H_m = 100$ м, для лучевых траекторий придонной области разделение сигналов достигается при $1/F_c = 0, 6...0, 7mc \leq 0, 9mc \leq \Delta T_p$, что обеспечивает дальность зондирования (при $f_c \sim 5...7$ кГц) до 25 км. При этом временное разрешение (4) $L\Delta c = \Delta T_m c^2 \geq \sigma_r c^2 = 113$ м²/c [5]. Указанная чувствительность анализа *L* Δc позволяет выявлять и анализировать на этих расстояниях все указанные выше типы газовыделений.

Рассеяние звука на случайных неоднородностях среды. Рассеяние на неоднородностях приводит к флуктуациям времени прихода сигналов τ , к увеличению их длительностей ΔT и к «рассеиванию» в пространстве лучевых траекторий, определяемому термином «толщина» луча d_v . В условиях зимнего ППЗК [8] показатели рассеяния τ и ΔT практически не ухудшают условий зондирования, в то время как «толщина» луча d_v оказывается основной причиной ограничений лучевого зондирования в мелком море. Реализуемые дальности зондирования в этих условиях могут достигать 15...20 км при глубинах более 70...100 м. В более благоприятных условиях ПЗК, когда улучшаются условия распространения и уменьшается рассеяние, при той же глубине $H_{\mu} = 100$ м дальность зондирования может достигать 20...25 км.

Величина аномальности неоднородности и ее размеры. Приближение лучевой акустики требует малости изменения скорости звука ($\Delta c/c_0 \ll 1$) на длине волны. Это требование выполняется практически всегда. Упрощение задачи инверсии за счёт линеаризации требует малости изменения скорости звука ($\Delta c/c_0 \ll 1$) в области газовыделения и малости отличия исходной Γ_m^0 и возмущённой Γ_m траекторий. Эти требования выполняются для большинства газовыделений. Точность оценок газовыделений зависит от соотношения их размера *L* и длины цикла лучевой траектории D_q . При длине цикла придонной траектории $D_q \sim 3,0$ км эти условия выполняются для большинства газовыделений стазовыделений (размером до L = 0,5 км).

Определение газосодержания и размерного состава пузырьков. Для оценивания размерного состава пузырьков необходимо определять зависимость $\Delta c(f)$, что требует зондирования на нескольких частотах. В реальных задачах зондирования диапазон используемых частот сигналов ограничен и в рассматриваемых условиях ПЗК, Н_и = 100 м, r~20 км, составляет от 5 до 10 кГц. При указанных частотах оценке поддаются газовыделения с размерами пузырьков 1,0...2,0 мм. Этим размерам соответствуют часто встречающиеся «средние» газовыделения [1]. В случае газовыделений, с большими пузырьков, оценка может быть только частичной. размерами Определение газосодержания τ_N , в случаях больших размеров пузырьков, требует использования низких частот (от 1,0 до 4,0 кГц, в случае характерных газовыделений [1]). При этом не удаётся разделить сигналы отдельных лучей. В этом случае можно использовать приход и время распространения первого сигнала и определение τ_N по его лучу.

Расчёты и оценки характеристик систем зондирования и достигаемых показателей при глубине моря $H_{_M} = 200$ м, приведенные в [1], показывают, что все характерные типы донных газовыделений поддаются обнаружению и количественному анализу на расстояниях ~50 км. В рассматриваемых условиях ПЗК и глубин $H_{_M} = 100$ м обнаружение и анализ этих газовыделений можно ожидать на расстояниях 20...25 км. В качестве иллюстрации выявления газовыделения на рис. 3 показан участок факелов поперечным размером 200 м и высотой над дном 50 м и лучевые траектории при глубине моря $H_{_M} = 100$ м на трассе длиной 25 км. Построение траекторий пересекавших и не пересекавших газовыделение (метод лучевой реконструкции, [7]) позволяет определить его положение на трассе зондирования и его высоту (рис. 3 б, в). Временные интервалы между сигналами лучей, $\Delta T_p \ge 0,9$ мс (рис. 3а) требуют для реализации системы полосы частот $F_c = 1, 4...1, 6$ кГц ($1/F_c \approx 0, 6...0, 7 < \Delta T_p$), что обеспечивается при частоте сигнала $f_c = 6...7$ кГц (удовлетворяющей условиям r = 25 км).

выводы

Донные газовыделения поддаются обнаружению и оцениванию при глубинах моря более 70...100 м. Лучшие результаты можно получить в условиях ПЗК с малой глубиной оси. В таком канале ($H_{_M}$ =100 м) достигаемые дальности r=15...25 км, временное разрешение $\sigma_r = 0,02...0,05$ мс, различаемая аномальность неоднородности $L\Delta c$ =45...113 м²/с, что позволяет выявлять и оценивать большинство характерных газовыделений.

ЛИТЕРАТУРА

- 1. Богушевич, Замаренова Л.Н., Скипа М.И. Выявление и оценка газовыделений из дна системами акустического горизонтального лучевого зондирования // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. Севастополь, 2006. вып.14. С. 546-553.
- 2. Скучик Е. Основы акустики. Т. 2. М.: Издат. Иностранная литература, 1959.
- 3. Соу С. Гидродинамика многофазных систем. М.: Мир, 1971. 536 с.

- 4. Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987. 464 с.
- Богушевич В.К., Замаренова Л.Н., Скипа М.И. Повышение эффективности экологического и ресурсного мониторинга морской среды за счёт применения метода акустического горизонтального лучевого зондирования // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. – Севастополь, 2006. – вып.14. – С. 349-357.
- 6. Гончаров В.В., Куртепов В.М. Успехи и проблемы акустической томографии океана / Акустичекие волны в океане. М.: Наука, 1987. С. 15-24.
- Богушевич В.К., Замаренова Л.Н., Скипа М.И. О возможностях акустического лучевого зондирования неоднородностей морской среды // Консонанс-2005. Акустичний симпозіум 27-29 вересня 2005 р. – Київ: Інститут гідромеханіки, 2005. – С. 90-96.
- Богушевич В.К., Замаренова Л.Н., Скипа М.И. О «толщине» лучей и возможностях акустического лучевого зондирования в условиях мелкого моря. // Консонанс-2007. Акустичний симпозіум 25-27 вересня 2007 р. – Київ: ІГМ, 2007. – настоящий сб.

Рис. 3