ЗНАХОДЖЕННЯ ПОТЕНЦІАЛУ ШВИДКОСТЕЙ РІДИНИ ПРИ РОЗПОВСЮДЖЕННІ ХВИЛЬ У НЕСКІНЧЕННІЙ ЦИЛІНДРИЧНІЙ ОБОЛОНЦІ З РІДИНОЮ

А.П.Коваленко

Інститут механіки ім. С.П.Тимошенка НАН України

АНОТАЦІЯ

В роботі розглядається нескінченна та напівнескінченна оболонка, заповнена рідиною. Рідина розглядається в акустичному наближенні. Рух оболонки описується рівняннями руху по моделі Тимошенко. Задача розглядається в безрозмірному вигляді. На першому етапі розглянуто рух рідини під дією деформації стінок оболонки. У просторі зображень по Лапласу-Карсону побудовано потенціал швидкостей рідини через невідомі переміщення стінок оболонки. На другому етапі на основі даного підходу розглянута конкретна задача про динамічні процеси в даній гідропружній системі при імпульсному навантаженні на торці оболонки. Показано вплив коефіцієнта взаємозв'язку елементів системи на характер хвильових процесів.

1. ВСТУП

Сучасний розвиток техніки приводить до необхідності врахування взаємного впливу рідини й оболонки як елементів гідропружної системи при різноманітних навантаженнях. Актуальність даних досліджень викликана також проблемами зниження матеріалоємності таких гідропружних систем як елементів різноманітних технічних конструкцій. Необхідність аналізу взаємодії елементів в поліагрегатних системах викликана також і практичними потребами, а саме: при розрахунку на міцність і покращенні експлуатаційних характеристик трубопроводів, паливних систем літальних апаратів, ємностей для транспонування рідких і газоподібних продуктів тощо.

На протязі останніх десятиліть проводяться дослідження, в яких розглядаються оболонкові та гідропружні системи під дією хвильових та динамічних навантажень [1,3-5,9,13-16]. Разом із тим недостатньо досліджено взаємний вплив елементів гідропружної системи при торцевих динамічних та імпульсних навантаженнях. На основі вищенаведеного, в даній роботі ставиться мета продовжити розробку започаткованого автором підходу до аналізу системи циліндрична оболонка – рідина [14] і дослідити вплив рідини на хвильовий рух оболонки при імпульсному навантаженні.

2. ПОСТАНОВКА ЗАДАЧІ

Розглядається рідина в акустичному наближенні [10], яка знаходиться в нескінченній циліндричній оболонці. Задачу можна записати у наступному вигляді.

Рівняння руху:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} - \frac{1}{a^2} \frac{\partial^2 \varphi}{\partial t^2} = 0.$$
(1)

Початкові та граничні умови:

t=0:
$$\varphi = \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial r} = \frac{\partial \varphi}{\partial t} = 0; \quad r = 1: \frac{\partial \varphi}{\partial r} = \frac{\partial W}{\partial t}; \quad x = \pm \infty: \frac{\partial \varphi}{\partial x} = 0.$$
 (2)

Тут φ - потенціал швидкостей рідини, W - поперечне переміщення стінок оболонки, x, r - повздовжня і радіальна координати стінки оболонки, t - час, a - швидкість звуку в рідині.

Задача записана в безрозмірній формі і за характерні величини вибрано характерну довжину L = R і характерний час $T = R \sqrt{\frac{(1-v^2)\rho_1}{E}}$. R - радіус оболонки, v, ρ_1, E - коефіцієнт Пуассона, густина та модуль Юнга матеріалу оболонки відповідно. Покладаємо, що при r = 0 розв'язок обмежений.

3. ПОБУДОВА ПОТЕНЦІАЛУ ШВИДКОСТЕЙ РІДИНИ

Для розв'язання поставленої задачі застосуємо інтегральне перетворення Лапласа-Карсона [7] $f^*(p) = p \int_{0}^{\infty} f(t) e^{-pt} dt$. Тоді в просторі зображень по Лапласу-Карсону задача запишеться у вигляді

$$\frac{\partial^2 \varphi^*}{\partial x^2} + \frac{\partial^2 \varphi^*}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi^*}{\partial r} - \frac{p^2}{a^2} \varphi^* = 0; \quad r = 1: \quad \frac{\partial \varphi^*}{\partial r} = pW^*; \quad x = \pm \infty: \quad \frac{\partial \varphi^*}{\partial x} = 0$$
(3)

Тут *p* - параметр інтегрального перетворення, зірочкою позначені величини в просторі зображень. Розв'язок даної задачі знаходимо за методом Бубнова-Гальоркіна [8] у вигляді

$$\varphi^* = aW^* e^{-\beta(1-r)} + \sum_{j=0}^N \Phi_j(x) J_0(\alpha_j r) , \qquad (4)$$

де $\beta = p/a$, $J_0(x)$ - функція Бесселя нульового порядку, α_j - корені рівняння $J_1(x) = 0$ ($J_1(x)$ - функція Бесселя першого порядку). Функція $f^* = aW^*e^{-\beta(1-r)}$ задовольняє граничним умовам за умови $W_x^*|_{x=\pm\infty} = 0$ і враховує ту обставину, що збурення від стінки оболонки поширюються в рідині зі швидкістю звуку і в області, не обхваченій збуреннями функція f = 0 (теорема запізнення). Функції $J_0(\alpha_j r)$ ($j = \overline{0, N}$) – неперервні, диференційовані і задовольняє умові застосування методу Бубнова-Гальоркіна [8]. Як це прийнято при застосуванні методу Бубнова–Гальоркіна, обмежимося N + 1 функціями $J_0(\alpha_j r)$.

Функції $\Phi_j(x)$ знаходяться з умови ортогональності "нев'язки". Для отримання "нев'язки" підставимо вираз (4) у рівняння (3) і в результаті отримаємо

$$R = \sum_{j=0}^{N} \left(\frac{d^2 \Phi_j(x)}{dx^2} - \lambda_j^2 \Phi_j(x) \right) J_0(\alpha_j r) + \frac{p}{r} e^{-\beta(1-r)} W^* + a e^{-\beta(1-r)} \frac{d^2 W^*}{dx^2} \quad .$$
(5)

Тут $\lambda_j^2 = \alpha_j^2 + \beta^2$ (*j* = 0,1,2,...,*N*). При отриманні виразу для *R* використано формули

диференціювання функцій Бесселя [11]:
$$\frac{dJ_0(\alpha_j r)}{dr} = -\alpha_j J_1(\alpha_j r) , \qquad (6)$$

$$\frac{d^2 J_0(\alpha_j r)}{dr^2} = -\alpha_j \left(J_0(\alpha_j r) - \frac{1}{\alpha_j r} J_1(\alpha_j r) \right) \alpha_j = -\alpha_j^2 J_0(\alpha_j r) + \frac{\alpha_j}{r} J_1(\alpha_j r)$$
(7)

Для того щоб вираз (4) був розв'язком задачі (3), необхідно, щоб функція R була ортогональна до всіх функцій $J_0(\alpha_j r)$ (j = 0, 1, 2, ..., N). Для цього помножимо вираз R (5) на $rJ_0(\alpha_j r)$ (j = 0, 1, 2, ..., N) і проінтегруємо по r від 0 до 1. В результаті отримаємо

$$\left\|J_{0}(\alpha_{j}r)\right\|^{2}\left(\frac{d^{2}\Phi_{j}(x)}{dx^{2}}-\lambda_{j}^{2}\Phi_{j}(x)\right)=-pW^{*}\int_{0}^{1}e^{-\beta(1-r)}J_{0}(\alpha_{j}r)dr-a\frac{d^{2}W^{*}}{dx^{2}}\int_{0}^{1}re^{-\beta(1-r)}J_{0}(\alpha_{j}r)dr$$
(8)

Звідси отримаємо рівняння та граничні умови для обчислення функцій $\Phi_{i}(x)$ (j = 0, 1, 2, ..., N):

$$\frac{d^2 \Phi_j(x)}{dx^2} - \lambda_j^2 \Phi_j(x) = -p B_{1j} W^* - a B_{2j} \frac{d^2 W^*}{dx^2}$$
(9)

$$x = \pm \infty : \quad \frac{d\Phi_j(x)}{dx} = 0 \tag{10}$$

В виразах (8), (9) прийняті позначення

$$B_{ij} = \left\| J_0(\alpha_j r) \right\|^{-1} \int_0^1 r^{i-1} e^{\beta(r-1)} J_0(\alpha_j r) dr, \quad (i = 1, 2; j = 0, 1, 2, ..., N)$$
(11)

$$\left\|J_{0}(\alpha_{j}r)\right\|^{2} = \int_{0}^{1} r J_{0}^{2}(\alpha_{j}r) dr = \frac{1}{2} J_{0}^{2}(\alpha_{j}) \quad (J = 0, 1, 2, ..., N)$$
(12)

Таким чином, вдалося в просторі зображень по Лапласу-Карсону розробити підхід до побудови потенціалу швидкостей рідини через переміщення оболонки.

4. РОЗВ'ЯЗОК КОНКРЕТНОЇ ЗАДАЧІ

На основі даного підходу розглянемо задачу про хвильові процеси в напівнескінченній оболонці під дією імпульсного навантаження на торці оболонки. Для опису руху оболонки використаємо рівняння руху по моделі Тимошенка [12], які враховують хвильовий рух стінок оболонки. Рідина розглядається в акустичному наближенні [10]. Початково-крайова задача при цьому має наступний вигляд.

Система рівнянь:
$$\begin{cases} \frac{\partial^2 U}{\partial x^2} - \frac{\partial^2 U}{\partial t^2} = -v \frac{\partial W}{\partial x}, \\ \frac{\partial^2 W}{\partial x^2} - \frac{2}{k^2(1-v)} \frac{\partial^2 W}{\partial t^2} = \frac{2}{k^2(1-v)} W + \frac{2v}{k^2(1-v)} \frac{\partial U}{\partial x} - \frac{\partial \Psi}{\partial x} + K_s, \\ \frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi}{\partial t^2} = \frac{6k^2 R^2(1-v)}{h^2} \Psi + \frac{6k^2 R^2(1-v)}{h^2} \frac{\partial W}{\partial x}, \\ \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} - \frac{1}{a^2} \frac{\partial^2 \varphi}{\partial t^2} = 0. \end{cases}$$
(13)

Початкові умови:
$$t = 0$$
: $U = W = \Psi = \varphi = \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial r} = \frac{\partial \varphi}{\partial t} = 0$; (14)

Граничні умови:
$$x = 0$$
: $\frac{\partial W}{\partial x} = \Psi = 0$, $\frac{\partial U}{\partial x} = V_0 \begin{cases} 0, & t \le 0\\ 1, & t > 0 \end{cases}$, $\frac{\partial \varphi}{\partial x} = \frac{\partial U}{\partial t}$; (15)

$$x = \infty$$
: $U = W = \Psi = \frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial r} = \frac{\partial \varphi}{\partial t} = 0$; (16)

$$r = 1: \quad \frac{\partial \varphi}{\partial r} = \frac{\partial W}{\partial t} \,. \tag{17}$$

Тут прийняті наступні позначення: U,W – поздовжнє та радіальне переміщення стінок оболонки, Ψ – кут повороту радіального волокна відносно осі x, h – товщина стінки оболонки, k^2 – коефіцієнт здвигу по моделі Тимошенко. При даному виборі характерних

величин швидкість розповсюдження поздовжніх хвиль в оболонці $C_p = 1$. Величина $C_s = \sqrt{\frac{k^2(1-v)}{2}} \epsilon$ швидкість поперечних хвиль в оболонці. Коефіцієнт $K_s = \frac{2R\rho_0}{h\rho_1k^2(1-v)} \epsilon$ характерним коефіцієнтом даної системи і характеризує взаємний вплив елементів даної гідропружної системи (ρ_0, ρ_1 питома вага рідини та матеріалу оболонки відповідно). Як

показано, при $V_0 \le 0.03C_p$ лінійна постановка задачі досить адекватно описує динамічні процеси в даній гідропружній системі [9].

У просторі зображень по Лапласу-Карсону на основі запропонованого підходу потенціал швидкостей рідини можна представити у вигляді

$$\varphi^* = -\frac{1}{\beta} V_0 e^{-\beta x} + a W^* e^{-\beta(1-r)} + \sum_{j=0}^N \Phi_j(x) J_0(\alpha_j r) \quad .$$
(18)

Тоді дану задачу можна записати в наступному вигляді.

$$C_{\rm ИСТЕМА рівнянь :} \begin{cases} \frac{d^2 U^*}{dx^2} - p^2 U^* = -v \frac{dW^*}{dx}, \\ \frac{d^2 W^*}{dx^2} - \frac{2p^2}{k^2(1-v)} W^* = \frac{2}{k^2(1-v)} W^* + \frac{2v}{k^2(1-v)} \frac{dU^*}{dx} - \frac{d\Psi^*}{dx} + \\ + K_s p \left(-\frac{1}{\beta} V_0 e^{-\beta x} + a W^* e^{-\beta(1-r)} + \sum_{j=0}^N \Phi_j(x) J_0(\alpha_j r) \right), \\ \frac{d^2 \Psi^*}{dx^2} - p^2 \Psi^* = \frac{6k^2 R^2(1-v)}{h^2} \Psi^* + \frac{6k^2 R^2(1-v)}{h^2}. \end{cases}$$
(19)

Граничні умови: x = 0: $\frac{dW^*}{dx} = \Psi^* = 0$, $U^* = \frac{V_0}{p}$; (20) $x = \infty$: $U^* = W^* = \Psi^* = 0$ (21)

Розв'язок системи диференціальних рівнянь (19) знаходимо по методу простих ітерацій. За початкове наближення виберемо $W^* = W_0^* = 0$. Із першого й третього рівнянь системи (19) знаходимо початкові наближення U_0^* і Ψ_0^* . По відомому значенню W_0^* по запропонованому підходу знаходимо початкове наближення для потенціалу швидкостей рідини φ_0^* . Знайдені значення $U_0^*, \Psi_0^*, \varphi_0^*$ підставляємо в друге рівняння системи (19) і отримуємо перше наближення для радіального переміщення стінок оболонки W_1^* . Наступні наближення розв'язку системи (19) знаходимо за цією схемою. Були отримані початкове, перше і друге наближення.

Початкове наближення має вигляд

$$W_0^* = 0, \quad U_0^* = \frac{V_0}{p} e^{-px}, \quad \Psi_0^* = 0, \quad \varphi_0^* = -\frac{V_0}{\beta} e^{-\beta x}$$
 (22)

Перше наближення має наступну структуру

$$W_{1}^{*} = C_{1}e^{-d_{1}x} + N_{1}e^{-px} + N_{2}e^{-\beta x}, \quad U_{1}^{*} = (C_{2} + N_{3}x)e^{-px} + N_{4}e^{-d_{1}x} + N_{5}e^{-\beta x}$$
$$\Psi_{1}^{*} = C_{3}e^{-d_{2}x} + N_{6}e^{-d_{1}x} + N_{7}e^{-px} + N_{8}e^{-\beta x}, \quad \varphi_{1}^{*} = -\frac{V_{0}}{\beta}e^{-\beta x} + aW_{1}^{*}e^{-\beta(1-r)} + \sum_{j=0}^{N}Y_{j}(x)J_{0}(\alpha_{j}r). \quad (23)$$

Для другого наближення наведемо структуру розв'язку тільки для W^*

$$W_{2}^{*} = (C_{4} + N_{9})e^{-d_{1}x} + (N_{10} + N_{11}x)e^{-px} + N_{12}e^{-d_{2}x} + (N_{13} + N_{14}x)e^{-\beta x} + \sum_{j=0}^{N}K_{j}e^{-\lambda_{j}x}$$
(24)

Коефіцієнти C_i (i = 1, 2, 3, 4), N_i (i = 1, 2, ..., 14) та $Y_j(x)$, K_j (j = 0, 1, 2, ..., N) є функції від характеристичних коефіцієнтів системи, поздовжньої координати x та параметру інтегрального перетворенння p, $d_1^2 = \frac{2\nu(p^2 + 1)}{k^2(1 - \nu)}$, $d_2^2 = p^2 + \frac{6k^2R^2(1 - \nu)}{h^2}$.

5. ЧИСЕЛЬНІ РЕЗУЛЬТАТИ

Перехід до оригіналів здійснювався чисельно по зміщеним поліномам Лежандра [6]. Автором проведено модифікацію даного методу і показано, що для неперерваних, достатньо гладких функцій похибка при обчисленнях не перевищує 1% [2]. На основі дослідження тестових задач аналогічного типу автором показано, що при застосування методу простих ітерацій друге наближення досить точно описує динамічні процеси в даній системі. При застосуванні методу Бубнова-Гальоркіна обчислення проводилися до практичної збіжності рядів. Як правило досить було значень N = 4,5,6.

Обчислення проводились для значень a = 0,25, $k^2 = 0,87$, h/R = 0,1. Результати обчислень представлені на мал.1 і мал.2.

На мал.1 представлено значення поперечного прогину оболонки W (друге наближення), віднесене до величини V_0 , в перерізі x = 1. Показано як розповсюджується збурення по часові для різних значень коефіцієнта K_s . Значення $K_s = 0$ відповідає відсутності рідини в оболонці. Чим більш велике значення питомої ваги рідини, тим більш високе значення коефіцієнта K_s . Для прикладу зазначимо, що для матеріалів керосиналюміній при h/R = 0,1 K_s коефіцієнт $K_s \approx 10,2$. Аналіз чисельних результатів показує, що до приходу збурення (t < 1) поперечне переміщення стінки оболонки рівне нулеві. В момент часу t = 1 цього перерізу досягають збурення, які розповсюджуються з найбільшою швидкістю $C_p = 1$. При $K_s = 0$ (немає рідини) маємо майже синусоїдальний характер коливання. Із збільшенням коефіцієнта K_s спостерігається затухання хвильового характеру розповсюдження і збільшується випучування оболонки. Хвиля тиску в рідині розповсюджується зі швидкістю a = 0,25 і досягає даного перерізу в момент часу t = 4. Це зумовлює більш виразніше випучування оболонки

На мал.2 показано значення швидкості поперечного переміщення оболонки (віднесене до V_0) в тому ж перерізі оболонки (x = 1). Тут також видно, що при відсутності

рідини ($K_s = 0$) маємо яскраво виражений хвильовий характер розповсюдження збурень. Із збільшенням коефіцієнта K_s відбувається затухання хвильового характеру даного процесу. Також чітко видно прихід хвилі тиску в рідині до даного перерізу (при t = 4). Разом з тим слід відмітити, що вплив рідини на розповсюдження поздовжніх переміщень стінок оболонки є незначним.

Таким чином, в даній роботі розроблено підхід до аналізу взаємного впливу рідини і напівнескіченної циліндричної оболонки під дією імпульсного навантаження, виділено коефіцієнт взаємодії та показано вплив даного коефіцієнта на розповсюдження збурень в оболонці.

ЛІТЕРАТУРА

- 1. Динамика элементов конструкций / Под ред. В.Д.Кубенко.–К.: "АСК",1999.–379с.– (Механика композитов. В 12-ти томах: Т.9)
- Коваленко А.П. Анализ погрешности численного обращения преобразования Лапласа-Карсона. //Труды IX научн. Конф. мол. ученых Имех АН УССР.–К., 1982.– С.103-107.
- 3. Ковальчук П.С., Кубенко В.Д. Взаимодействие колеблющихся цилиндрических оболочек с содержащейся в них жидкостью /Динамика тел взаимодействующих со средой/. Под ред. А.Н.Гузя.–К.: Наук. Думка,1991.–С.168-214.
- 4. Ковальчук П.С., Крук Л.А. К задаче о вынужденных колебаниях цилиндрических оболочек, полностью заполненных жидкостью// Прикл.механика.–2005–41,№2.– С.52-59.
- 5. Ковальчук П.С., Крук Л.А. О волновых формах деформирования цилиндрических оболочек с жидкостью при периодическом воздействии// Прикл.механика.–2005– 41,№5.–С.76-82.
- 6. Крылов В.И., Скобля Н.С. Методы приближенного преобразования Фурье и обращения преобразования Лапласа.– М.: Наука, 1974.–224с.
- 7. Лурье А.И. Операционное исчисление. М.-Л.: Гостехиздат, 1950.–431с.
- 8. Михлин С.Г. Численная реализация вариационніх методов. М.: Наука, 1966. 432с.
- 9. Сагомонян Е.А. О распространении продольных волн в цилиндрической оболочке.– Вестн.Моск.ун-та. Математика, механика. 1977.– №1.–С.111-112.
- 10. Седов Л.И. Механика сплошной среды. М.: Наука, 1976.–Т.2.–574с.
- 11. Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1977. 342с.
- 12. Gerrmann G., Mirsky J. Three–dimensional and shell-theory analysis of axially motions of cylinder// J. Appl. Mech.–1956.–23, №4.–P.563-568.
- 13. Gulyaev V.I., Lugovoi P.Z., Lysyuk N.A. Propsgstion of Harmonic Waves in a Cylidrical Shell (Timoshenko Model) // Int. Appl. Mech.– 2003–**39**, №4–C.472-478.
- 14. Kovalenko A.P. Investigation of Translents in a Cylindrical Shell with Fluid under Shock Excitation //Soviet Appl. Mech.– 1979.–15, №11.–P.1067-1072.
- 15. Koval'chuk P.S., Podchasov N.P., Kholopova. Analysis of Nonlinear Bulding of Liquid– Filled Cylindrical Shells Under Local Dynamic Loading// Int. Appl. Mech.– 2003.–**39**, №3.–C.74-80.
- 16. Koval'chuk P.S., Filin V.G. On modes of Flexural of initially Bent Cylindrical Shells Partially Filled with a Liquid // Int. Appl. Mech.– 2003.–**39**, №4.–P.464-471.