УДК 539.612: 534.231.1

АКУСТИЧЕСКИЙ КОНТРОЛЬ АЛМАЗНЫХ КОМПОЗИТОВ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ

БЕЗЫМЯННЫЙ Ю.Г., канд. техн. наук, ст. науч. сотр., ИСТОМИНА Т.И., КАСИМОВ М.А.

Институт проблем материаловедения им. И.Н. Францевича НАНУ, г. Киев, Украина.

Рассмотрена возможность определения качества межчастичных контактов наполнителя и металлической матрицы в алмазных композитах посредством измерения коэффициента затухания и (или) скорости распространения упругой волны.

ВЕДЕНИЕ

Настоящая работа представляет собой пример практического применения методологии акустического контроля физико-механических свойств, элементов структуры и дефектности многофазных гетерогенных материалов [1] к композитам на основе металлических волокон.

Алмазные композиты с металлической матрицей широко используются как антифрикционные и инструментальные материалы. [2] При эксплуатации изделий из таких материалов одним из основных факторов, определяющих их долговечность, является степень удержания алмазов матрицей. [2, 3] Поэтому вопрос обеспечения высоких адгезионных характеристик связки матрица-наполнитель играет важную роль при разработке технологии создания, изготовлении и эксплуатации изделий из алмазных композитов. Гарантией наличия качественной связки во всех этих случаях могут служить неразрушающие методы контроля, в частности, акустические. [4]

Основная проблема при построении акустической модели заключается в интерпретации отображения параметров акустического поля, существующего или сформированного в исследуемом материале, и параметров контролируемого свойства материала в рамках принимаемой механической модели. Результатом этого отображения является функциональная зависимость, в нашем случае, скорости распространения и коэффициента затухания упругой волны от характеристик адгезии матрица-наполнитель. Решение этой задачи тем сложнее, чем сложнее структура материала. Критерием истинности полученных функциональных зависимостей могут служить корреляционные, которые можно получить эмпирическим путём.

1 МОДЕЛИРОВАНИЕ АЛМАЗНЫХ КОИПОЗИТОВ

Рассмотрение алмазных композитов как акустической среды требует анализа её характеристик упругости, инерции, внутреннего трения с учётом неоднородности среды, волновых размеров и волновых сопротивлений структурных элементов материала [5]. При этом примем такие допущения. Во-первых, чтобы абстрагироваться от граничных условий изделия, будем рассматривать среду как бесконечную. Во-вторых, будем считать, что коэффициент затухания упругой волны в материале незначительно изменяется на её длине. Это позволяет рассматривать среду как линейную для бесконечно малых амплитуд упругой волны и использовать скорости распространения упругих волн для полной характеристики механического поведения материала [6]. В-третьих, будем считать, что волновые размеры элементов структуры материала малы. Это позволяет считать, что в процессе распространения упругой волны в материале не нарушается её

плоский характер и проводить анализ акустического поля в рамках одномерной задачи с позиции механики сплошных сред [7].

С учётом указанных допущений акустическое отображениё исследуемого композита будет представлять собой скорость распространения упругой волны в некотором однородном изотропном материале, имеющем такие же физико-механические характеристики, как и эффективные физико-механические характеристики композита с исследуемой структурой. Следует отметить, что, хотя структурную модель такого материала можно рассматривать с позиции макроуровня, но его свойства будут определяться особенностями строения на мезоуровне.

Структурно акустическую модель композита можно представить в следующем виде (рис.1): серый цвет — наполнитель, белый — поры. Наполнитель представляет собой алмазный порошок, размер частиц которого (200÷400) нм.

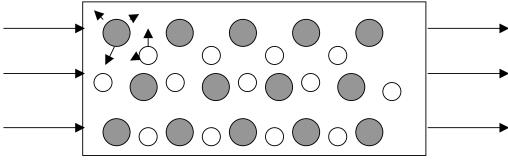


Рис.1

2 ИСПОЛЬЗОВАНИЕ СКОРОСТИ РАСПРОСТРАНЕНИЯ УПРУГОЙ ВОЛНЫ ДЛЯ КОНТРОЛЯ АЛМАЗНЫХ КОМПОЗИТОВ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ.

В рамках применяемой модели эффективное значение скорости распространения упругой волны будет зависеть от физико-механических характеристик исходных фаз, объёмного содержания включений и пор и степени консолидации твёрдых фаз. Аналитически это может быть записано в следующем виде:

$$C_{3\phi} = C(C_1, C_2, C_3, \theta, k, A)$$
 (1)

где C_i –скорость распространения упругой волны в исходной фазе (матрица, включение или пора), θ – пористость, k – концентрация углеродного включения, A – коэффициент, учитывающий качество контактов между отдельными элементами мезоструктуры и дефектность отдельных элементов мезоструктуры, соответственно.

При построении зависимости скорости распространения от пористости (или процентного содержания включений), а также для определения скорости в смеси необходимо учитывать интервал пористости (или включений) и различие физикомеханических свойств компонентов [10]. Поэтому математические выражения для модуля упругости, плотности и коэффициента Пуассона принимают следующий вид [6, 9, 10]:

$$E = E_0 * (1 - 2 * \theta)$$

$$\rho = \rho_0 * (1 - \theta)$$

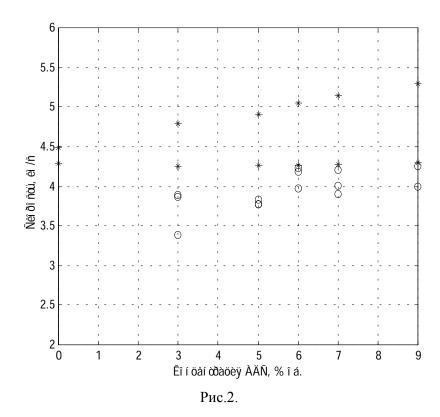
$$v = v_0 * (1 - \theta)$$
(2)

где индекс 0 обозначает беспористый (или без включений) материал.

Скалярные величины рассчитываются по правилу аддитивности:

$$A_{e\phi} = \sum_{i} A_{i} * \theta_{i} , \qquad (3)$$

где $A_{e\varphi}$ - эффективное значение скалярного свойства; A_i -соответственно значение свойства i-той фазы.


Для нескалярных величин справедливо следующее неравенство:

$$K > K_{e\phi} > \overline{K}^{-1}, \tag{4}$$

 $_{\Gamma \text{Де}} \quad K = \sum_i k_i * \theta_i \equiv K_V \; , \quad \overline{K}^{-1} = \sum_i \frac{\theta_i}{k_i} \equiv K_{\scriptscriptstyle R} \; \text{-усреднение} \quad \text{по} \quad \Phi$ ойхту и Рейсу,

соответственно.

Расчётные зависимости и экспериментальные данные представлены на рис.2. "Звёздочки" — расчётные зависимости скорости по Фойхту и Рейссу, "кружочки" — экспериментальные значения.

Для оценки качества контактов матрица-наполнитель был введён диагностический параметр δ .

$$\delta = \frac{C \exp}{Ctheor} \tag{5}$$

Значения диагностического параметра представлены на рис.3

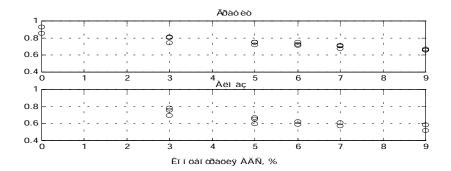


Рис.3.

Установлено, что с увеличением концентрации наполнителя скорость распространения упругой волны имеет тенденцию к спаду, что может быть обусловлено увеличением площади поверхности несовершенных межчастичных контактов наполнителя и металлической матрицы.

Установлено, что пористость оказывает более сильное влияние на изменение скорости распространения упругой волны в исследуемом материале и поэтому её наличие приводит к маскирующему действию при установлении зависимости скорости от качества контакта твёрдых фаз.

З ИСПОЛЬЗОВАНИЕ КОЭФФИЦИЕНТА ЗАТУХАНИЯ ДЛЯ КОНТРОЛЯ АЛМАЗНЫХ КОМПОЗИТОВ С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ.

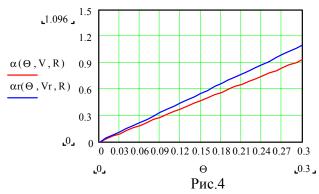
В рамках рассматриваемой модели составляющая КЗ α_n обусловлена рассеиванием на микронеоднородностях (по отношению к λ -длине волны) порового пространства материала и может быть представлена как [11]. В нашем случае, коэффициент затухания обусловлен наличием пористости в металлической матрице, поэтому

$$\alpha = \alpha_n = 0.5 m \gamma,$$
 (6)

где – m - количество центров рассеяния в единице объёма

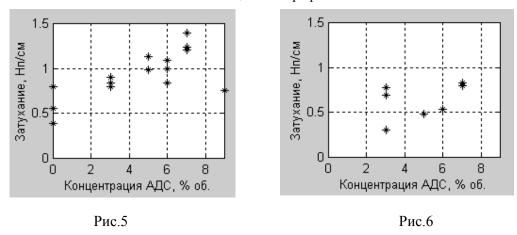
 γ - сечение рассеивания единичного центра рассеяния в виде сферической поры радиуса R.

В области рассеивания Релея, когда волновые размеры пор малы (kR<<1)


$$\gamma_{l} \approx \frac{4}{9} \cdot g_{l} \cdot (k_{l} \cdot R)^{4} \cdot \pi \cdot R^{2}$$
(7)

$$q_{c} = \frac{4}{3} + 40 \cdot \frac{2 + 3(V_{l}/V_{t})^{5}}{[4 - 9(V_{l}/V_{t})^{2}]^{2}} - \frac{3}{2} \cdot \left(\frac{V_{l}}{V_{t}}\right)^{2} + \frac{2}{3} \cdot \left(\frac{V_{l}}{V_{t}}\right)^{3} + \frac{9}{16} \cdot \left(\frac{V_{l}}{V_{t}}\right)^{4};$$
(8)

Заменяя γ на пористость Θ , получим связь K3, обусловленного на порах, с параметрами порового пространства.


$$\alpha = 10^6 * \frac{8\Theta(\pi f)^4}{3C^4} * R^3 \tag{9}$$

Расчётная зависимость коэффициента затухания от пористости представлена на рис.4:

Измерения коэффициента затухания проводились на частоте $f = 5M\Gamma u$.

Экспериментальные значения коэффициента затухания представлены на рис. 5. В качестве наполнителя использовался неочищенный графит.

На рис.6 представлены экспериментальные значения для матрицы и очищенного алмаза, применяемого в качестве наполнителя.

В ходе расчётов модели затухания упругой волны в алмазных композитах с металлической матрицей было установлено, что наибольшее влияние на рост коэффициента затухания оказывает пористость матрицы, а также геометрические размеры исследуемого образца. Повышение чувствительности при проведении экспериментальных исследованиях приводит к недостоверности получаемых результатов в виду наложения дифракционного затухания, затуханию на границах образца.

Установлена корреляция коэффициента затухания со скоростью распространения упругой волны. Коэффициент затухания увеличивается с ростом концентрации наполнителя, что подтверждает вывод об увеличении площади несовершенных контактов матрицы и наполнителя при рассмотрении возможности применения скорости распространения упругой волны.

ЛИТЕРАТУРА

- 1. Безымянный Ю.Г. Методология акустического контроля многофазных гетерогенных материалов / Збірник праць акустичного симпозіуму «Консонанс 2005». К.: 2005. с.50-55.
- 2. Новейшие технологии в порошковой металлургии и керамике: Тезисы докладов Междунар. конф. Киев, 2003. 436 с.
- 3. Райченко А.И. Основы процесса спекания порошков пропусканием электрического тока. -М.: Металлургия, 1987.-128с.
- 4. И.П.Захарченко. Алмазные инструменты и процессы обработки. Киев.-«Техника».- 1980. 213с.
- Безымянный Ю.Г. Возможности акустических методов при контроле структуры и физико-механических свойств порошковых материалов.// Порошковая металлургия .-2001.- №5-6. -C.23-33.
- 6. Безымянный Ю. Г. Использование акустических характеристик для контроля структуры пористых материалов // Электронная микроскопия и прочность материалов: Киев: Ин-т проблем материаловедения НАН Украины, 1999. С. 93-105.
- 7. Шутилов В.А. Основы физики ультразвука. Л.: Изд-во Ленинградского ун-та, 1980. 280 с.
- 8. Безымянный Ю.Г., Вдовиченко А.В., Кузьменко В.А. Некоторые результаты акустических исследований материалов, изготовляемых методами порошковой металлургии. Препринт.–Киев:НАН Украины. ИПМ, 1994.–63 с.
- 9. Роман О.В., Скороход В.В., Фридман Г.Р. Ультразвкуковой и резистометрический контроль в порошковой металлургии. Мн.: Выш. шк., 1989.- 182с.
- 10. Скороход В.В. Теория физических свойств пористых и композиционных материалов и принципы управления их микроструктурой в технологических процессах // Порошковая металлургия, 1995.- №1-2. -С.53-70.
- 11. Р.Труэлл, Ч.Эльбаум, Б.Чик: Ультразвуковые методы в физике твёрдого тела, Москва, 1972 с.
- 12. Методы акустического контроля металлов / А.П.Алешин, В.Е.Белый, А.Х.Вопилкин и др.-М.:Машиностроение, 1989.-456с.
- 13. Безымянный Ю.Г., Вдовиченко А.В., Кузьменко В.А. Некоторые результаты акустических исследований материалов, изготовляемых методами порошковой металлургии. Препринт.- Киев: НАН Украины. ИПМ, 1994. 63 с.
- 14. Найдич Ю.В., Уманский В.П., Лавриненко И.А. Прочность алмазо-металлического контакта и пайка алмазов. Киев: Наук.думка, 1988.