ПРИМЕНЕНИЕ МЕТОДА АКУСТИЧЕСКОЙ ЭМИССИИ В ПРОМЫШЛЕННОСТИ

М.А. Яременко, М.А. Овсиенко, Л.Ф. Харченко

ИЭС им. Е.О.Патона НАН Украины

Аннотация

В данной работе рассматривается применение акустико-эмиссионного (АЭ) метода с использованием системы технической диагностики «ЕМА-2», разработанной в Институте электросварки им. Е.О. Патона совместно с фирмой «Видеотон» (Венгрия), для контроля промышленных объектов. В частности, проанализированы результаты обследования продуктового трубчатого змеевика печи каталитического крекинга нефти методом АЭ и другими методами неразрушающего контроля. Проведено сравнение полученных данных. Показана высокая эффективность метода АЭ контроля.

Работа выполнена под руководством д.т.н., проф. Недосеки А.Я.

В настоящее время значительно расширилось применение метода акустической эмиссии для контроля состояния сварных конструкций. Это обусловлено высокой чувствительностью современных приемных преобразователей и усовершенствованием алгоритмов обработки сигналов АЭ, развитием математического аппарата обработки полученной информации. АЭ контроль промышленных конструкций проводился с использованием системы технической лиагностики «ЕМА-2».

Основные характеристики системы «EMA-2»:

•	Число каналов аналоговой обработки сигналов АЭ:	8
•	Число низкочастотных технологических каналов:	4
•	Число каналов имитации импульсов АЭ:	1
•	Рабочий диапазон частот каналов АЭ:	351000 кГц

• Динамический диапазон входных сигналов

в рабочем диапазоне частот не менее 50 дБ Частота среза фильтров верхних частот: 25; 50; 100; 200 кГц

• Приведенная погрешность измерения максимальных значений амплитуды импульсов АЭ и текущих значений непрерывной АЭ:

значений непрерывной АЭ: не более 5 % Погрешность дискретизации временных параметров не более 1 мкс

• Диапазон измерения амплитуды низкочастотных

параметров по технологическим каналам: 5 мкВ...0,5 В

• Погрешность измерения амплитуды низкочастотных параметров

ных параметров не более (0.005+0.05 U) В

Рабочий диапазон частот АЭ датчиков
Рабочий диапазон температур АЭ датчиков
Внешний вид системы «ЕМА-2» представлен на рисунке 1.

При проведении АЭ контроля промышленных конструкций степень допустимости обнаруженных дефектов определялась традиционными методами в соответствии с существующей нормативно-технической документацией.

Рассмотрим результаты работ по обследованию трубчатого продуктового змеевика печи П-101 производства каталитического крекинга (радиационная и конвективная часть), выполненного из стали 12X18H10T, диаметр труб 219 мм, толщина — 10 мм. Общая длина

4 потоков составляла ~ 1200 м. Трубопроводы печи насчитывают около 500 монтажных и заводских сварных кольцевых швов.

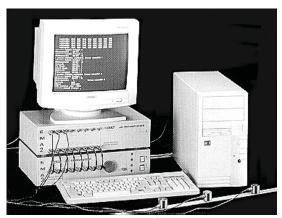


Рис. 1

Основные технические характеристики радиационной/конвективной частей трубчатого змеевика, изготовленного в 1989 г., приведены в таблице 1:

Табл. 1

Производительность, кг/ч	58380	
Поверхность нагрева, м ²	622.5/544	
Давление рабочее, МПа	5.5/ 6.0	
Давление расчетное, МПа	6.0/6.0	
Давление пробное при гидр	9.5/9.5	
Температура рабочей	на входе	-/240
среды, ⁰ С	на выходе	420/—
Температура расчетная стен	523/523	
Среда	вакуумный дистилят	
Характеристика среды	взрывоопасная	
Прибавка на коррозию, мм	1/1	
Количество потоков	4/8	
Габаритные размеры (длина	17028, 4028, 18000	

После проведения предварительного тестового прозвучивания объекта контроля и измерения коэффициента затухания АЭ волн в материале трубопровода было определено расстояние между датчиками и необходимое их количество, а также оптимальные рабочие параметры для настройки системы АЭ контроля. АЭ датчики были установлены на заранее подготовленные места и зафиксированы специальным акустопрозрачным материалом. Участок трубчатого змеевика с указанием мест установки датчиков АЭ (Д1 – Д4) представлен на рис. 2. Также на рисунке показаны заводские и монтажные сварные швы.

Акустико-эмиссионный контроль змеевика осуществлялся по типовой методике (СТП 50.02-2000, Р 50-01-01) в режиме линейной локации с поднятием внутреннего давления до 10 МПа в соответствии с заранее согласованным графиком нагружения изделия.

Учитывая незначительное затухание волн акустической эмиссии в данном объекте (меньше 0.05 Hп/м), расстояние между датчиками достигало 200 м. Испытание трубопроводов проводилось в два этапа. На каждом этапе контролировалось по два участка длиной до 600 м каждый.

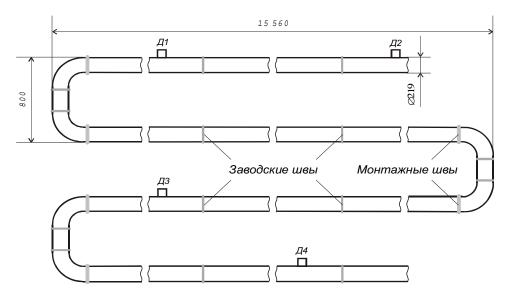


Рис. 2

Фрагмент участка радиационной части змеевика с установленным на поверхности трубопровода датчиком АЭ представлен на фото (рис. 3).

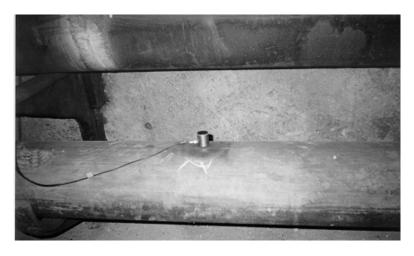
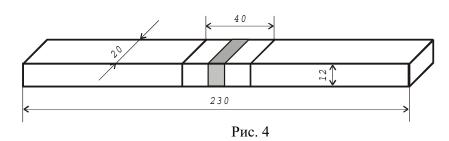


Рис. 3

В результате акустико-эмиссионного контроля трубчатого змеевика печи каталитического крекинга нефти при проведении пневмоиспытания были обнаружены развивающиеся дефекты и определены их координаты.

Дополнительно были проведены рентгенография и цветная дефектоскопия мест, определенных в результате акустико-эмиссионного контроля. В табл. 2 приведены результаты сравнения данных, полученных вышеперечисленными методоми, а также классификация найденных дефектов для одного из контролируемых участков.

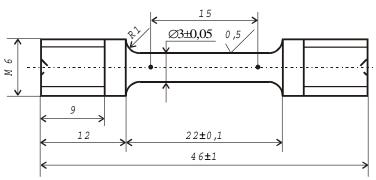

Табл. 2

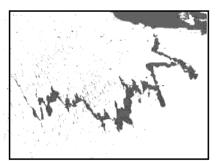
		1 aoji. 2							
Вид контроля									
Цветная Рентгенография		Выявленные дефекты методом АЭ контроля							
дефектоскопия									
I ПОТОК									
Радиационная часть									
+	+	2Т-4 мм Н-2 мм							
+	+	Пдр-300 мм, Т-60 Н-3 мм							
+	+	2П-2 мм, 3Пдр-200 мм							
+	+	3Т-8 мм Н-3 мм, 2Пдр-200 мм							
+	+	2Т-5 мм Н-2 мм, 2П-2 мм							
+	+	2Т-6 мм Н-3 мм							
+	+	3П-3 мм, Пдр-100 мм							
+ +		2Т-8 мм Н-3 мм							
+ +		дефекты типа Т не обнаружены							
Дефекты швов, не указанные АЭ методом									
+ -		дефекты типа Т не обнаружены							
+	_	2П-2 мм							
+ _		6Т-5мм Н-1 мм							
+ –		4Т-4 мм Н-1 мм							
	Кон	івективная часть							
+	+	2Т-6 мм Н-2 мм							
+	+	3П-2 мм							
+ +		4Т-8 мм Н-2 мм							
	Переход из	з радиации в конвекцию							
+	+	дефекты типа Т не обнаружены							
+	+	2П-3 мм							
+	+	Пдр-60 мм							
+	+	2П-2 мм Т-8 мм Н-2 мм							
+	+	3Т-4 мм Н-2 мм							

Примечание: Т – трещина (указано число трещин наибольшей длины);

H – глубина трещин, мм; Π – пора (указан Ø, мм); Π др - подрез (указана длина, мм).

Для проведения лабораторных исследований были подготовлены образцы из фрагментов радиационной и конвективной частей змеевика. Заготовка из фрагмента змеевика (радиационная часть) с кольцевым заводским швом для металлографии (средняя часть) и изготовления образцов МИ-14 представлена на рис. 4. Образец МИ-14 для испытаний металла шва, околошовной зоны на растяжение представлен на рис. 5.




Рис. 5

Проведены испытания на растяжение образцов из материала трубы печи каталитического крекинга. Результаты испытаний приведены в таблице 3.

Табл. 3

Место вырезки	Предел текучести, МПа	Предел прочности, МПа	Относительное удлинение, %	Относительное сужение, %
участок радиации	290,5	572,5	58	78
участок конвекции	307	551	38	68
- " -	383	595	23	42
- " -	341	565	31	51
- " -	354	587	44	67

Исследована структура сварных соединений и основного металла трубы из стали 12X18H10T. В результате исследования установлено наличие горячих трещин в верхнем валике сварного соединения (рис. 6, увел.120, монтажные швы), наличие межкристаллитной коррозии на внутренней поверхности трубы в районе зоны термического влияния сварки. Также обнаружены шлаковые включения в металле шва монтажного стыка трубы, очаги межкристаллитной коррозии в основном металле сварного соединения. Таким образом, показано, что метод акустической эмиссии достаточно надежно регистрирует наличие в изделии развивающихся дефектов.

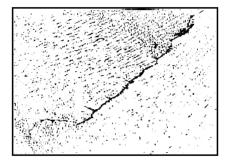


Рис. 6

На основании проведенного АЭ контроля при проведении пневмоиспытания трубчатого змеевика, проведения дополнительного обследования указанных мест другими методами неразрушающего контроля и последующего лабораторного исследования образцов из материала трубчатого змеевика можно сделать следующие выводы:

- 1. Акустико-эмиссионный метод обеспечил 100% контроль поверхности трубчатого змеевика печи, включая сварные монтажные и заводские соединения.
- 2. При выполнении рассмотренных в докладе контрольных работ метод АЭ обеспечил регистрацию развивающихся дефектов типа трещин, непроваров и др. в изделиях из стали 12X18H10T, традиционно сложных для других методов контроля. Результаты АЭ контроля подтверждены другими методами.
- 3. Опыт применения АЭ метода показывает его высокую оперативность и производительность при достоверности, соответствующей требованиям принятых нормативных документов.

ЛИТЕРАТУРА

- 1. Б.Е. Патон, А.Я. Недосека, М.А. Яременко, Л.Ф. Харченко, М.А. Овсиенко. Акустикоэмиссионная диагностика работоспособности трубопроводных систем и сосудов нефтеперерабатывающих, нефтехимических и химических производств, работающих под давлением до 16 МПа. Методика утверждена ТКУ-78 и согласована с Госнадзорохрантруда Украины.
- 2. А.Я. Недосека. Основы расчета и диагностики сварных конструкций. Киев, «Индпром», 2001.
- 3. Р 50-01-01. Рекомендації щодо акустико-емісійного контролю об'єктів підвищеної небезпеки. Київ, ТКУ-78 "ТДНК".
- 4. СТП 50.02-2000. Технічна діагностика. Котли, посудини під тиском і трубопроводи. Загальні технічні вимоги. Київ, ТКУ-78 "ТДНК".