НОРМАЛЬНЫЕ ЭЛЕКТРОУПРУГИЕ ВОЛНЫ В СЛОЕ ПРОИЗВОЛЬНОГО СРЕЗА ПЬЕЗОКРИСТАЛЛА КВАРЦА

В. А. СТОРОЖЕВ, А. В. БАЙ

Донецкий национальный университет

ВВЕДЕНИЕ

В публикациях [1], [2], [3] рассмотрены вопросы построения и исследования дисперсионных уравнений, описывающих полные спектры нормальных электроупругих волн в отнесенных к кристаллографическим координатам трехмерных пьезокристаллических пластинах орторомбической системы в пластинах из AT-, GT-, NT-срезов пьезокристалла α-кварца.

В настоящей статье описана процедура построения и численно-аналитического исследования дисперсионного уравнения для пластины из произвольного среза пьезокристалла любой кристаллографической системы и представлена ее численная реализация применительно к пластине BT-среза пьезокристалла α -кварца.

Постановка задачи и методика получения решения.

Объектом рассмотрения в данной статье является отнесенная к декартовым координатам Ox_j плоскопараллельная упругая пластина, изготовленная из произвольного среза пьезокристалла произвольной кристаллографической системы, занимающая в прямоугольных безразмерных координатах область

$$V = \{ |x_3| < h, -\infty < x_1, x_2 < \infty \}.$$
 (1)

Плоские грани пластины свободны от напряжений и покрыты безинерционными короткозамкнутыми электродами, то есть на них заданы граничные условия вида

$$\begin{cases}
\sigma_{3i} = 0, \\
E_i = 0.
\end{cases}$$
(2)

Записываемая в тензорной форме задача о нахождении спектра связанных электроупругих волн, распространяющихся в плоскости данной пластины, включает в себя уравнения движения

$$\sigma_{kl,l} = \rho \ddot{U}_k \quad (k, l = \overline{1,3}), \tag{3}$$

квазистатическое уравнение Максвелла

$$D_{i,i} = 0 \quad (i = \overline{1,3}), \tag{4}$$

и уравнения прямого и обратного пьезоэффекта

$$\sigma_{kl} = c_{ijkl}^E S_{ij} - e_{mkl} E_m,
D_n = \varepsilon_{mn}^S E_m + 4\pi e_{nij} S_{ij},$$
(i, j, k, l, m, n = \overline{1}, \overline{3}). (5)

С использованием соотношений (5) и формул

$$S_{ij} = \frac{1}{2}(U_{i,j} + U_{j,i}), E_i = -\varphi_{,i},$$
(6)

для преобразования уравнений (3), (4) полную систему уравнений динамики пьезоактивной среды можно привести к виду

$$\begin{cases}
c_{ijkl}^{E}U_{i,jl} + e_{mkl}\varphi_{,ml} &= \rho \ddot{U}_{k}, \\
4\pi e_{nij}U_{i,j} - \varepsilon_{mn}^{S}\varphi_{,m} &= 0,
\end{cases} (i, j, m, n = \overline{1, 3}).$$
(7)

С введением для функций U_i и φ представлений

$$U_{i} = f_{i}(x_{3}) \exp^{I(\omega t - k(n_{1}x_{1} + n_{2}x_{2}))},$$

$$\varphi = f_{4}(x_{3}) \exp^{I(\omega t - k(n_{1}x_{1} + n_{2}x_{2}))},$$
(8)

в которых I - мнимая единица, уравнение (7) преобразовывается к системе четырех обыкновенных дифференциальных уравнений второго порядка с постоянными коэффициентами

$$\begin{cases}
c_{i3q3}^{E}f_{i}''(x_{3}) - Ik(n_{\tilde{j}}c_{i\tilde{j}q3}^{E} + n_{\tilde{i}}c_{i3q\tilde{l}}^{E})f_{i}'(x_{3}) - k^{2}n_{\tilde{j}}n_{\tilde{i}}c_{i\tilde{j}q\tilde{l}}^{E}f_{i}(x_{3}) + e_{3q3}f_{4}''(x_{3}) - \\
-Ik(n_{\tilde{m}}e_{\tilde{m}q3} + n_{\tilde{l}}e_{3q\tilde{l}})f_{4}'(x_{3}) - k^{2}n_{\tilde{m}}n_{\tilde{l}}e_{\tilde{m}q\tilde{l}}f_{4}(x_{3}) = \omega^{2}f_{q}(x_{3}), \\
4\pi e_{3i3}f_{i}''(x_{3}) - 4\pi Ik(n_{\tilde{j}}e_{3i\tilde{j}} + n_{\tilde{n}}e_{\tilde{n}i3})f_{i}'(x_{3}) - 4\pi k^{2}n_{\tilde{n}}n_{\tilde{j}}e_{\tilde{n}i\tilde{j}}f_{i}(x_{3}) - \varepsilon_{33}^{S}f_{4}''(x_{3}) + \\
+Ik(n_{\tilde{m}}\varepsilon_{\tilde{m}3}^{S} + n_{\tilde{n}}\varepsilon_{3\tilde{n}}^{S})f_{4}'(x_{3}) + k^{2}n_{\tilde{m}}n_{\tilde{n}}\varepsilon_{\tilde{n}\tilde{m}}^{S}f_{4}(x_{3}) = 0, \\
(i, j, q, l, m, n = \overline{1, 3}; \tilde{i}, \tilde{j}, \tilde{l}, \tilde{m}, \tilde{n} = \overline{1, 2}).
\end{cases}$$
(9)

Аналогично, граничные условия (2) преобразовываются к виду

$$\begin{cases}
c_{i33l}^{E} f_{i}'(\pm h) - I c_{ij3l}^{E} k n_{i} f_{j}(\pm h) - e_{33l} f_{4}'(\pm h) + I k n_{\tilde{m}} e_{\tilde{m}3l} f_{4}(\pm h) = 0, \\
f_{4}(\pm h) = 0, \\
(i, l = \overline{1, 3}; \tilde{m}, \tilde{n} = \overline{1, 2}).
\end{cases} (10)$$

Как уже было отмечено в [1], особенность проблемы анализа спектральной задачи (7), (10) заключается в том, что во всех встречающихся в литературе исследованиях характеристическое уравнение системы дифференциальных уравнений вида (7), корни которого должны быть вычислены с очень высокой точностью [1], являлось биквадратным, бикубическим либо битетраэдрическим по параметру p и решалось аналитически. В отличие от этих исследованных случаев характеристическое уравнение системы (7) является полиномом восьмой степени, имеющим в общем случае ненулевые, зависящие от частотного параметра ω и волнового числа k, коэффициенты при всех степенях p. Его корни $p_m(\omega,\varphi)$ ($m=\overline{1,8}$) при реализации алгоритма вычисления дисперсионной функции находились численным методом Дженкинса-Трауба. В результате, полученное методом Эйлера решение системы (7) имеет вид

$$f_j(x_3) = \sum_{m=1}^{8} \left[\beta_{jm} A_m \exp(I p_m x_3) \right] \quad (j = \overline{1, 4}),$$
 (11)

где A_m - произвольные постоянные интегрирования. β_{jm} - решения однородных систем линейных уравнений

$$\begin{cases}
[-c_{i3q3}^{E}p_{r}^{2} + k(n_{\tilde{j}}c_{i\tilde{j}q3}^{E} + n_{\tilde{l}}c_{i3q\tilde{l}}^{E})p_{r} + k^{2}n_{\tilde{j}}n_{\tilde{l}}c_{i\tilde{j}q\tilde{l}}^{E} + e_{3q3}p_{r}^{2} + \\
+k(n_{\tilde{m}}e_{\tilde{m}q3} + n_{\tilde{l}}e_{3q\tilde{l}})p_{r} - k^{2}n_{\tilde{m}}n_{\tilde{l}}e_{\tilde{m}q\tilde{l}} - \delta_{qr}\omega^{2}]A_{r} = 0, \\
-[4\pi e_{3i3}p_{r}^{2} + 4\pi k(n_{\tilde{j}}e_{3i\tilde{j}} + n_{\tilde{n}}e_{\tilde{n}i3})p_{r} - 4\pi Ik^{2}n_{\tilde{n}}n_{\tilde{j}}e_{\tilde{n}i\tilde{j}}p_{r} + \varepsilon_{33}^{S}p_{r}^{2} + \\
-k(n_{\tilde{m}}\varepsilon_{\tilde{m}3}^{S} + n_{\tilde{n}}\varepsilon_{3\tilde{n}}^{S})p_{r} + k^{2}n_{\tilde{m}}n_{\tilde{n}}\varepsilon_{\tilde{n}\tilde{m}}^{S}]A_{r} = 0, \\
(i, j, q, l, m, n = \overline{1, 3}, \tilde{i}, \tilde{j}, \tilde{l}, \tilde{m}, \tilde{n} = \overline{1, 2}, r = \overline{1, 8}),
\end{cases}$$
(12)

нормированное таким образом, что $\beta_{1m} = 1$. Подставляя далее представление (11) в граничные условия (10), приходим к системе линейных однородных алгебраических уравнений относительно постоянных A_m ($m = \overline{1,8}$).

$$\begin{cases} \sum_{r=1}^{8} A_r \exp(\pm I p_r h) (\beta_{ir} (c_{i33l}^E p_r - c_{\tilde{i}j3l}^E k n_{\tilde{i}}) - \beta_{4r} (e_{33l} - k n_{\tilde{m}} e_{\tilde{m}3l})) = 0, \\ \sum_{r=1}^{8} \beta_{4r} A_r \exp(\pm I p_r h) = 0, \\ (i, j, l = \overline{1, 3}; \tilde{i}, \tilde{m} = \overline{1, 2}). \end{cases}$$
(13)

Из условия существования нетривиальных решений данной системы следует искомое дисперсионное уравнение $\Delta(\omega,k)=0$, левая часть которого представляет собой функциональный определитель восьмого порядка.

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ ЧАСТОТ

Характерной начальной фазой анализа исследуемого дисперсионного спектра является вычисление частот запирания бегущих нормальных волн. Соотношения для их определения следуют из спектральной задачи (9)-(10), в которой k полагается равным нулю.

$$\begin{cases}
c_{i3q3}^E f_i''(x_3) + e_{3q3} f_4''(x_3) = \omega^2 f_q(x_3), \\
4\pi e_{3i3} f_i''(x_3) - \varepsilon_{33}^S f_4''(x_3) = 0,
\end{cases}$$
(14)

$$\begin{cases}
c_{i33l}^{E} f_i'(\pm h) - e_{33l} f_4'(\pm h) = 0, \\
f_4(\pm h) = 0, \\
(i, q, l = \overline{1, 3}).
\end{cases}$$
(15)

Принципиальным отличием рассматриваемого случая от ранее изученных задач определения критических частот для пластин орторомбической системы с гранями, параллельными кристаллографическим плоскостям [1], является то, что корни частотного уравнения невозможно выразить в явном виде.

Полученное методом Эйлера решение системы (14) имеет вид

$$f_j(x_3) = \sum_{k=1}^{6} A_{jk} \exp(Ip_k x_3) + A_{j7} x_3 + A_{j8}, \tag{16}$$

где $p_k \ (k=\overline{1,6})$ - ненулевые корни характеристического уравнения системы (14)

$$z\left(\alpha_4 z^3 + \alpha_3 z^2 + \alpha_2 z + \alpha_1\right) = 0, (17)$$

$$z = p^2/\rho\omega^2$$
, $p_{2i-1} = \omega\sqrt{\rho z_i}$, $p_{2i} = -\omega\sqrt{\rho z_i}$; (18)

 a_i - в общем случае ненулевые коэффициенты, зависящие от $c^E_{ijk},\,e_{ijk},\,\varepsilon^S_{ij}.$

Корни уравнения (17) могут быть найдены в явном виде по формулам Кардано, что создает дополнительные возможности для анализа их параметрических зависимостей от физико-механических постоянных слоя.

Константы A_{jk} в представлениях (16) связаны между собой соотношениями, устанавливаемыми при применении метода Эйлера к системе (14) и приводящимися к виду $A_{jk} = \beta_{jk}A_k$ ($j = \overline{1,4}, k = \overline{1,8}$). Величины β_{ij} определяются путем приравнивания нулю коэффициентов при A_j в соотношениях, получаемых подстановкой решений (16) в систему (14), причем

$$\beta_{17} = \beta_{18} = \beta_{27} = \beta_{28} = \beta_{37} = \beta_{38} = 0, \tag{19}$$

Искомое уравнение для критических частот получим, подставляя выражения

$$f_{j}(x_{3}) = \sum_{k=1}^{6} \beta_{jk} A_{k} e^{ip_{k}x_{3}} \quad (j = \overline{1,3}),$$

$$f_{4}(x_{3}) = \sum_{k=1}^{6} A_{k} e^{ip_{k}x_{3}} + A_{7}x_{3} + A_{8},$$
(20)

в граничные условия (15). Это уравнение представляет собой равенство нулю определителя $\tilde{\Delta}(\omega)=0$ системы однородных алгебраических уравнений относительно коэффициентов A_k , следующей из граничных условий.

АНАЛИЗ РЕЗУЛЬТАТОВ ЧИСЛЕННЫХ ИССЛЕДОВАНИЙ

Анализ построенного для универсального случая дисперсионного уравнения был реализован применительно к пластине (слою) ВТ-среза пьезоактивного кристалла тригонально-трапецоэдрического класса α -кварца. При расчетах использовались значения компонент тензоров c_{ijkl}^E , e_{ijk} , ε_{ij}^S для α -кварца, приведенные в [5]. Пересчет физикомеханических постоянных для различным образом ориентированных срезов материала проводился по формулам преобразования тензоров при переходе к новой системе координат [4], [5].

На рис. 1-3 соответственно представлены для сравнительного анализа диаграммы полного дисперсионного спектра связанных нормальных электроупругих волн в пластине BT-среза и рассчитанные отдельно в работе [3] диаграммы дисперсионных спектров для пластин NT- и GT-срезов. Представленные спектры рассчитаны для направления распространения, составляющего угол 30° с осью Ox_1 в плоскости пластины, получаемой при естественной переориентации соответсвующей кристаллографической оси $O\tilde{x}_1$ для данного среза α -кварца. Безразмерные параметры Ω и k^* на рис. 1-3 задавались в виде $\Omega = 2h\omega/v^*$, $k^* = 2kh/v^*$, где $v^* = 10^6$ м/с. Мнимые и действительные корни дисперсионной функции находились по методике, разработанной применительно к плоскопараллельным волноводам из низкосимметричных непьезоактивных материалов [6] и распространенной на случай пьезоактивных материалов в [1], [2], [3]. Комплексные корни отыскивались на основании алгоритма поиска локальных минимумов модуля дисперсионной функции методом скорейшего спуска.

В качественном отношении спектры имеют много сходных элементов в действительной части, а наибольшие различия касаются структуры спектра краевых стоячих волн. Нулевую частоту запирания в спектрах имеют три ветви действительных и одна

ветвь мнимых корней. Если в спектре для пластины NT-среза третья, седьмая, десятая действительные ветви с ненулевой частотой запирания имеют участки с отрицательным углом наклона, что соответствует явлению "обратных"волн, то для пластин BT-, GT-срезов этим свойством обладает только одна мода - четвертая мода. Особенностью представленных спектров является наличие в них петлеобразным мнимых корней с начальными и конечными точками на оси k^* , а также мнимых ветвей кольцевого типа.

В спектре на рис. 3 имеются почти вертикальные участки мнимых ветвей, появление которых связано с влиянием квазистатического электрического поля. В спектре на рис. 1 и 2 такие участки имеют разрывный характер, и, в особенности, это свойственно низкочастотной части спектра для пластины ВТ-среза.

ЛИТЕРАТУРА

- 1. Сторожев В.И., Бай А.В. Нормальные волны в ортотропной пъезоактивной пластине // Теорет. и прикладная механика. 2001. Вып. 33. С. 164–169.
- 2. Сторожев В.И., Бай А.В., Шпак В.А. Спектр нормальных электроупругих волн в слое из пъезокристалла кварца // Теорет. и прикладная механика. 2002. Вып. 36. С. 125–130.
- 3. Бай А. В. Полные дисперсионные спектры электроупругих волн в пластинах из сложных срезов пъезокристалла кварца // Теорет. и прикладная механика. 2003. Вып. 38. С. 148–152.
- 4. Дьелесан Э., Руайе Д. Упругие волны в твердых телах. Применение при обработке сигналов: Пер. с франц. М.: Наука, 1982. 424 с.
- 5. Мэзон У. Пьезоэлектрические кристаллы и их применение в ультраакустике: Пер. с англ. М.: Изд-во иностр. лит-ры, 1952. 448 с.
- 6. Абрамова О.П., Сторожев В.И., Шпак В.А. Дисперсия нормальных волн в ортотропном слое с закрепленными границами // Акуст. журнал. 1996. Т.42, №1. С. 5-9.

