УДК 534.231

ВЗАИМОСВЯЗЬ МОДЕЛИ ГИДРОАКУСТИЧЕСКОГО ПЛОСКОСЛОИСТОГО ВОЛНОВОДА НА ЖЕСТКОМ ОСНОВАНИИ С ВОЛНОВОДОМ ПЕКЕРИСА

Ю.И.ПАПКОВА

Севастопольский национальный технический университет ул. Университетская, 33, 99053 Севастополь, Украина E-mail: stanislav.papkov@gmail.com

Получено 12.05.2013

Исследована взаимосвязь двух типов волноводов с "жидким" дном. Показано, что дискретная часть спектра волновода Пекериса в предельном случае совпадает со спектром волновода, в котором свойства дна моделируются "жидким" слоем на твердом основании. Проанализированы результаты численных расчетов при варьировании параметров системы.

КЛЮЧЕВЫЕ СЛОВА: слоистый волновод, волновод Пекериса, проницаемое дно, волновое число, коэффициент потерь

Досліджено взаємозв'язок двох типів хвилеводів з "рідким" дном. Показано, що дискретна частина спектру хвилеводу Пекеріса у граничному випадку співпадає зі спектром хвилеводу, в якому властивості дна моделюються за допомогою "рідкого" шару на твердій основі. Проаналізовано результати чисельних розрахунків при варіюванні параметрів системи.

КЛЮЧОВІ СЛОВА: шаруватий хвилевід, хвилевід Пекеріса, проникне дно, хвильове число, коефіцієнт втрат

The paper deals with studying of dependence between two types of waveguides with a "liquid" bottom. In the limiting case, the discrete part of the spectrum of the Pekeris waveguide is shown to coincide with the spectrum of a waveguide in which properties of the bottom are simulated as a "liquid" layer on a rigid foundation. The numerical results at varying system parameters are analyzed.

KEY WORDS: stratified waveguide, the Pekeris waveguide, permeable bottom, wavenumber, loss coefficient

введение

При отыскании звукового поля подводного источника в слоистой среде выбор подхода, используемого для формального описания акустических свойств системы, зависит от степени влияния дна на формирование звукового поля в таком волноводе, поскольку глубины слоев дна могут варьироваться в достаточно широких пределах [1-3]. В несколько меньшей степени изменяется скорость звука в донных отложениях. Следует отметить, что донные слои представляют собой сложные смеси частиц с промежутками между ними, заполненными водой. Следовательно, согласно теории Био, в них могут распространяться три волны - две продольные и поперечная. Первая продольная волна связана с распространением звука по скелету структуры. Она имеет сравнительно большую скорость распространения и малое затухание. Вторая продольная волна связана с распространением звука по воде, заполняющей скелет. Для нее характерны малая скорость и относительно большое затухание. В жидком дне поперечная волна почти не распространяется. Исходя из этого, в гидроакустических приложениях при описании волновода со слоистой структурой, в которой донные слои представляют собой "жидкий" грунт, традиционно используется физическая модель, учитывающая только продольную волну первого вида.

Весьма важной величиной для оценки амплитуды волн в такой системе является коэффициент затухания в грунте. Большое количество результатов измерений этой величины для различных типов грунтов приведено в работе [1]. Отсюда следует, что затухание в песчаном грунте существенно больше, чем в иле или глине. Наличие коэффициента затухания в донном грунте позволяет для описания процесса распространения звуковых волн в слоистой среде использовать как модель дна типа однородного "жидкого" полупространства, так и в виде достаточно глубокого слоя на твердом основании. Представляет интерес проведение сравнительного анализа характеристик звукового поля для плоскослоистой модели волновода для этих двух случаев с целью изучения влияния на звуковое поле свойств "жидкого" дна и геометрии нижней границы (для волновода на абсолютно твердом основании).

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим плоскослоистую модель гидроакустического волновода на абсолютно-жестком основании (рис. 1). При таком подходе учитываются как структура донных осадков по плотности ρ_k , так и неоднородность профиля скорости звука $c_k(z)$ в плоских слоях.

Расположим начало цилиндрической системы координат на поверхности волновода над источником звука с координатами $(0, z_0)$, причем ось Oz направим от поверхности ко дну. Рассматриваемый гидроакустический волновод имеет радиальную симметрию и ограничен свободной поверхностью и "жидким" дном на абсолютно жестком основании.

Звуковое поле, определяемое амплитудой потенциала скорости $\Phi(r, z)$, удовлетворяет неоднородному уравнению Гельмгольца

$$\Delta \Phi + \frac{\omega^2}{c^2(z)} \Phi = -\frac{\delta(z-z_0)\delta(r)}{2\pi r}$$

со следующими граничными условиями:

$$\Phi|_{z=0} = 0; \qquad \left. \frac{\partial \Phi}{\partial z} \right|_{z=h_N} = 0.$$

Кроме того, на границах раздела слоев $z = h_k$ выполняются условия непрерывности звукового поля:

$$\lim_{z \to h_k -} \rho_k \Phi = \lim_{z \to h_k +} \rho_{k+1} \Phi,$$
$$\lim_{z \to h_k -} \frac{\partial \Phi}{\partial z} = \lim_{z \to h_k +} \frac{\partial \Phi}{\partial z},$$
$$k = 1, 2, \dots, N - 1.$$

Общее решение $\Phi(r, z)$ краевой задачи, удовлетворяющее граничным условиям и условию излу-

Рис. 1. Модель слоистой среды на абсолютно жестком основании

чения, строится в виде суммы нормальных мод:

$$\Phi = \sum_{n=0}^{\infty} A_n \phi_n(z) H_0^{(1)}(\xi_n r).$$
 (1)

Здесь $\{\xi_n\}_{n=0}^{\infty}$ и $\{\phi_n(z)\}_{n=0}^{\infty}$ $(\phi_n(z) \equiv \phi_{k,n}(z), z \in [h_{k-1}; h_k])$ – собственные числа и собственные функции следующей краевой задачи:

$$\phi_k'' + \left(\frac{\omega^2}{k^2(z)} - \xi^2\right)\phi_k = 0, \quad z \in [h_{k-1}; h_k],$$

 $\lim_{z \to h_k -} \rho_k \phi_k(z) = \lim_{z \to h_k +} \rho_{k+1} \phi_{k+1}(z),$

$$\lim_{z \to h_k -} \phi'_k(z) = \lim_{z \to h_k +} \phi'_{k+1}(z), \qquad (2)$$
$$k = 1, 2, \dots, N - 1,$$
$$\phi_1(0) = 0, \quad \phi'_N(h_N) = 0;$$

 A_n – произвольные постоянные.

Строго говоря, краевая задача (2) не является задачей типа Штурма–Лиувилля, так как, кроме условий Штурма на границах волновода, при $(k=1,2,\ldots,N-1)$ должны выполняться условия непрерывности звукового поля. Тем не менее, в [6] доказано соотношение ортогональности собственных функций $\{\phi_n(z)\}$ с весом $\rho(z)$ в пространстве интегрируемых с квадратом функций $L_2[0; h_N]$:

$$\int_{0}^{h_N} \rho(z)\phi_n(z)\phi_m(z)dz = \delta_{n,m} \int_{0}^{h_N} \rho(z)\phi_n^2(z)dz,$$

где $\delta_{n,m}$ – символ Кронекера.

Предполагается возможность аппроксимации неоднородного профиля скорости звука $c_k(z)$ кривыми, позволяющими получить точное решение вертикального волнового уравнения (2). При этом общее решение уравнения (2) на отрезке $z \in [h_{k-1}; h_k]$ представляется как

$$\psi_k = C_{1,k}\psi_{1,k}(z) + C_{2,k}\psi_{2,k}(z)$$

Здесь $\psi_{1,k}(z)$, $\psi_{2,k}(z)$ – линейно-независимые решения уравнения (2); $C_{1,k}$ и $C_{2,k}$ – неопределенные коэффициенты. Используя данное представление, получаем из условий (2) следующую однородную систему линейных алгебраических уравне-

Ю. И. Папкова

 $\psi_{1,N}'(h_N)C_{1,N} + \psi_{2,N}'(h_N)C_{2,N} = 0.$

Рассмотрим некоторые случаи зависимости $k^2(z) = \omega^2/c^2(z)$ от координаты z, при которых существуют аналитические решения уравнения Гельмгольца:

при k²(z) = a+bz линейно независимые решения выражаются через функции Эйри:

$$\psi_{1,1} = \operatorname{Ai}\left(\frac{\xi^2 - a - bz}{\sqrt[3]{b^2}}\right),$$
$$\psi_{2,1} = \operatorname{Bi}\left(\frac{\xi^2 - a - bz}{\sqrt[3]{b^2}}\right);$$

• при $k^2(z) = k_0^2(a^2 - b^2/z^2)$ линейно независимые решения выражаются через функции Ханкеля:

$$\psi_{1,1} = \sqrt{z} H_p^{(1)}(\beta z),$$

$$\psi_{2,1}=\sqrt{z}\,H_p^{(2)}(eta z),$$
где $p\!=\!\sqrt{k_0^2b^2\!+\!1/4};\,\beta^2\!=\!k_0^2a^2\!-\!\xi^2;$

• при $k^2(z) = k_0 e^{az}$ в результате замены $\nu = k_0/a e^{az}$ дифференциальное уравнение решается в цилиндрических функциях $H_q^{(1)}(\nu)$ и $H_q^{(2)}(\nu)$, где $q = (k_0 \sin \theta)/a$, где θ – угол падения;

• при $k(z) = k_0(p^2 + (1-p^2+q)e^{-az} - qe^{-2az}$ (биэкспоненциальный закон изменения) получаемые решения выражаются через функции Уиттекера $M_{k,\mu}$ и $W_{k,\mu}$ [2].

В каждом из этих случаев равенство нулю определителя однородной алгебраической системы, полученной из системы (3), дает дисперсионное уравнение для определения собственных чисел $\{\xi_n\}$:

$$\Delta(\xi) = 0.$$

После подстановки выражения (1) в неоднородное уравнение Гельмгольца с учетом ортогональности собственных функций $\{\phi_n(z)\}_{n=0}^{\infty}$ в пространстве $L_2[0; h_N]$ значения произвольных постоянных A_n определяются следующим образом:

$$A_n = \frac{i}{4} \frac{\rho(z_0)\phi_n(z_0)}{\int_0^{h_N} \rho(z)\phi_n^2(z)dz} \,. \tag{4}$$

В результате выражение для амплитуды потенциала скорости $\Phi(r, z)$ приобретает вид

$$\Phi(r,z) = \frac{i}{4}\rho(z_0)\sum_{n=0}^{\infty} \frac{\phi_n(z_0)\phi_n(z)}{\int_0^{h_N}\rho(z)\phi_n^2(z)dz} H_0^{(1)}(\xi_n r).$$

В качестве примера рассмотрим модель гидроакустического волновода, который представляет собой однородный слой воды глубины h_1 с плотностью ρ_1 и постоянным профилем скорости звука c_1 , внутри которого расположен точечный источник. Второй слой – "жидкий" грунт глубины $(h-h_1)$ с плотностью ρ_2 и постоянным профилем скорости звука c_2 , лежащий на твердом основании.

Из приведенных выкладок следует, что решение краевой задачи приводит к следующему дисперсионному уравнению для определения собственных чисел $\{\xi_n\}$:

$$\operatorname{tg}\left(\sqrt{k_1^2 - \xi_n^2}h_1\right)\operatorname{tg}\left(\sqrt{k_2^2 - \xi_n^2}(h - h_1)\right) = \\ = b_{2,1}\sqrt{\frac{k_1^2 - \xi_n^2}{k_2^2 - \xi_n^2}}.$$

Здесь $b_{2,1} = \rho_2/\rho_1$; $k_1^2 = \omega^2/c_1^2$; $k_2^2 = \omega^2/c_2^2(1-i\gamma)^2$; γ – коэффици<u>ент зат</u>ухания в "жидком" грунте.

Положив $\sqrt{\xi_n^2 - k_1^2} h_1 = i\alpha$, запишем дисперсионное уравнение в виде

$$\operatorname{tg} \alpha \operatorname{th} \left(\frac{\sqrt{l^2 - \alpha^2}(h - h_1)}{h_1} \right) = \frac{-b_{2,1}\alpha}{\sqrt{l^2 - \alpha^2}} \,,$$

49

где $l^2 = k_1^2 h_1^2 (1-n^2)$; $n = c_1/c_2 (1-i\gamma)$ – коэффициент преломления. При наличии в грунте потерь $\gamma \neq 0$, все корни этого уравнения комплексны. В этом случае в водном слое будут распространяться только затухающие нормальные волны.

Использовав известное разложение thz при больших |z| [4]:

th
$$z = 1 - 2e^{-2z} + 3e^{-4z} - 2e^{-6z} + \dots,$$
 (5)

для $h \to \infty$ придем к характеристическому уравнению для двухслойного волновода, в котором второй слой является жидким однородным полупространством [3]:

$$\operatorname{tg}\left(\sqrt{k_1^2 - \xi^2}h_1\right) = \frac{-b_{2,1}\sqrt{k_1^2 - \xi^2}}{\sqrt{\xi^2 - k_2^2}}.$$

Таким образом, в предельном случае бесконечной глубины осадочной подложки слоя спектр краевой задачи модели слоистого волновода на абсолютно жестком основании совпадает с дискретной частью спектра краевой задачи для волновода Пекериса, состоящего из водного слоя (скорость звука c_1), лежащего на жидком полупространстве (скорость звука $c_2 > c_1$).

Акустическое поле точечного гармонического источника с частотой ω и координатами $(0, z_0)$ в волноводе Пекериса выражается контурным интегралом

$$\Phi(r,z) = \frac{1}{4\pi} \int_{C} G(z,z_0,\xi^2) H_0^{(1)}(\xi r) \xi d\xi,$$

где $G(z, z_0, \xi^2)$ – функция Грина следующей краевой задачи:

$$\begin{aligned} G_1'' + \left(\frac{\omega^2}{c_1^2(z)} - \xi^2\right) G_1 &= -\delta(z - z_0), \quad 0 \le z \le h_1 \\ G_2'' + (k_2^2 - \xi^2) G_2 &= 0, \quad z > h_1, \\ G_1(0) &= 0, \quad \rho_1 G_1(h_1) = \rho_2 G_2(h_1), \end{aligned}$$

$$G_1'(h_1) = G_2'(h_1).$$

Здесь $\delta(z)$ – дельта-функция Дирака; $k_2 = \omega/c_2(1-i\gamma); \gamma$ – коэффициент затухания.

Разбив полупространство $[0; \infty)$ на две части, определим функцию Грина на двух слоях $[0; h_1]$ и $(h_1; \infty)$. В жидком однородном полупространстве с постоянным профилем скорости звука c_2 функция Грина G_2 имеет вид

$$G_2 = L \exp\left(-i\sqrt{k_2^2 - \xi^2}z\right),$$

где L – константа, определяемая из условий непрерывности звукового поля на границе слоев $z = h_1$ для волновода Пекериса.

В случае двухслойной модели волновода на абсолютно жестком основании, где второй слой представляет собой "жидкий" грунт глубины $(h-h_1)$ с постоянным профилем скорости звука c_2 , решение краевой задачи (2) на отрезке $z \in [h_1; h]$ представляется так:

$$\psi_2 = C_{1,2} \sin\left(\sqrt{k_2^2 - \xi^2} z\right) + C_{2,2} \cos\left(\sqrt{k_2^2 - \xi^2} z\right),$$

где $C_{1,2}$ и $C_{2,2}$ – неопределенные коэффициенты. Использование граничного условия на дне дает

$$\psi_{2}' = \left[C_{1,2}\cos\left(\sqrt{k_{2}^{2} - \xi^{2}}h\right) - -C_{2,2}\sin\left(\sqrt{k_{2}^{2} - \xi^{2}}h\right)\right]\sqrt{k_{2}^{2} - \xi^{2}} = 0,$$

откуда после алгебраических преобразований следует

$$C_{1,2} = C_{2,2} \operatorname{tg} \left(\sqrt{k_2^2 - \xi^2} z \right),$$

$$\psi_2 = C_{2,2} \left[\cos(\sqrt{k_2^2 - \xi^2} z) + i \operatorname{th} \left(\sqrt{\xi^2 - k_2^2} z \right) \sin(\sqrt{k_2^2 - \xi^2} z) \right].$$

Если $\gamma \neq 0$ при $h \rightarrow \infty$, то с учетом асимптотической формулы (5) получаем

$$C_{2,2}\left[\cos(\sqrt{k_2^2 - \xi^2}z) - i\sin\left(\sqrt{k_2^2 - \xi^2}z\right)\right] \rightarrow$$
$$\rightarrow L\exp\left(-i\sqrt{k_2^2 - \xi^2}z\right)$$

Неопределенный коэффициент $C_{2,2}$ находим из системы линейных алгебраических уравнений (3), которая получена из условий непрерывности звукового поля на границе слоев $z=h_1$ для модели волновода на абсолютно жестком основании. Легко понять, что в предельном случае совпадают также и нормальные моды обоих волноводов.

Таким образом, поскольку волны в "жидком" дне затухают с глубиной, то для описания процесса распространения звуковых волн в слоистой среде можно использовать модель дна, представленного как однородноым "жидким" полупространством, так и достаточно глубоким слоем на твердом основании.

Ю. И. Папкова

m	$\xi_m^0(h=60{ m m})$	$\xi_m^0(h=65{ m m})$	$\xi_m^0(h=70{ m m})$	ξ_m
1	0.837758	0.835944 + 0.000091i	0.835944 + 0.000091i	0.835944 + 0.000091i
2	0.830455 + 0.000387i	0.830477 + 0.000364i	0.830478 + 0.000365i	0.830478 + 0.000365i
3	0.821222 + 0.000887i	0.821281 + 0.000828i	0.821283 + 0.000831i	0.821283 + 0.000831i
4	0.808074 + 0.001640i	0.808218 + 0.001500i	0.808221 + 0.001507i	0.808221 + 0.001507i
5	0.790716 + 0.002676i	0.791068 + 0.002417i	0.791067 + 0.002450i	0.791067 + 0.002450i

Таблица. Собственные значения для двух моделей волновода

Рис. 2. Зависимость $h_1 \operatorname{Im} \xi_0$ от круговой частоты ω

Рис. 3. Зависимость $h_1 \mathbf{Im} \xi_0$ от коэффициента затухания γ

Представляет интерес исследование основных факторов дальнего распространения в гидроакустических волноводах, наиболее существенно влияющих на звуковое поле. Для этого суммарное поле нормальных волн в водном слое, лежащем на "жидком" грунте выберем в виде (1). При больших значениях ξr , используя асимптотическое преставление функции Ханкеля [5], звуковое поле можно записать так:

$$\Phi(r,z) = \sum_{n=0}^{\infty} A_n \phi_n(z) \sqrt{\frac{2}{i\pi r}} \frac{e^{i\xi_n r}}{\sqrt{\xi_n}}.$$

Здесь коэффициенты A_n в представлении потенциала скорости определяются из формулы (4).

Полагая $\xi = \operatorname{\mathbf{Re}} \xi + i \operatorname{\mathbf{Im}} \xi$, представим звуковой потенциал для нулевой нормальной волны в форме

$$A_0\phi_0(z)\sqrt{\frac{2}{i\pi r}}\,\frac{e^{ih_1({\bf Re}\,\xi_0/h_1-h_1{f Im}\,\xi_0r/h_1)}}{\sqrt{\xi_0}}$$

позволяющей исследовать особенности поля нулевой нормальной волны, вносящей основной вклад в распространение звука в водном слое. Как известно, при отсутствии потерь в грунте закон спадания потенциала с удалением от источника для распространяющихся мод соответствует множителю $1/\sqrt{r}$. При наличии затухания ($\gamma \neq 0$) появляется добавочный экспоненциальный множитель $e^{-\mathbf{Im} \xi_0 r}$. Это приводит к более быстрому убыванию Φ , определяемому (в расчете на расстояние, равное глубине водного слоя) величиной $h_1 \mathbf{Im} \xi_0$.

2. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Исследуем влияние геометрии нижней границы h для двухслойной модели волновода. Для этого выберем однородный слой воды глубины $h_1 = 54$ м с постоянным профилем скорости звука $c_1 = 1500$ м/с, внутри которого расположен точечный источник с частотой f = 200 Гц. Второй слой представляет собой "жидкий" грунт глубины $(h-h_1)$ с постоянным профилем скорости звука $c_2 = 1600$ м/с и затуханием $\gamma = 0.0916171$, лежащий на твердом основании. Пусть отношение плотностей будет $b_{2,1} = 1.25$.

Для сравнения рассмотрим гидроакустический волновод Занга [8], состоящий из водного слоя, лежащего на жидком полупространстве с теми же параметрами. В таблице проведено количественное сопоставление результатов для горизонтальных волновых чисел ξ , полученных для двухслой-

Рис. 4. Изменение фазовой скорости нулевой нормальной волны c_{Φ} при различной толщине "жидкого" грунта H ($\omega = 100$ рад/с)

ной модели волновода на абсолютно жестком основании при варьировании нижней границы волновода $h\left(\xi_m^0\right)$ и для модели волновода Занга $\left(\xi_m\right)$. Из представленных данных следует, что спектр краевой задачи двухслойной модели волновода на абсолютно жестком основании уже при h=70 м с точностью до шести знаков совпадает с дискретной частью спектра для волновода, дно которого представляет собой жидкое полупространство.

Для волновода на абсолютно жестком основании с параметрами $\rho_1 = 2 \ \mathrm{r/cm^3}, \ c_1 = 1494 \ \mathrm{m/c}, \ \rho_2 = 2 \ \mathrm{r/cm^3}, \ c_2 = 1800 \ \mathrm{m/c}, \ h_1 = 100 \ \mathrm{m}, \ h = 120 \ \mathrm{m}, \ \gamma = 0.08$ на рис. 2 показана частотная зависимость величины $h_1 \mathrm{Im} \ \xi_0$ от ω . Из графика видно, что в диапазоне ω от 80 до 150 рад/с величина $h_1 \mathrm{Im} \ \xi_0$ монотонно убывает.

Для данной модели волновода представляется интересным провести исследование нулевого собственного значения в зависимости от коэффициента затухания γ (ω =100 рад/с). На рис. 3 приведены значения h_1 Im ξ_0 для γ в пределах от 0.09 до 0.6. Отсюда можно сделать вывод о том, что тип "жидкого" грунта модели волновода на абсолютно жестком основании оказывает существенное влияние на значение h_1 Im ξ_0 .

Изменение фазовой скорости нулевой нормальной волны

$$c_{\Phi} = \frac{\omega}{|\mathbf{Re}\,\xi_0|}$$

при различных толщинах "жидкого" грунта $H = h - h_1$ в отсутствии потерь $(c_{\Phi} = \omega/|\xi_0|)$ показывает, что уже при $H \ge 130$ м наблюдается выход на "полупространственную" асимптотику, см. рис. 4. Кроме того, на рис. 5 приведены отношения c_{Φ}/c при изменении толщины "жидкого" грунта. Из графика видно, что влияние этого слоя на фазовую скорость весьма незначительно и c_{Φ}/c

Рис. 5. Изменение величины c_{Φ}/c при различной толщине "жидкого" грунта H ($\omega = 100$ рад/с)

приближается к единице – скорость нормальной волны приближается к скорости звука в водной среде.

Исследуем влияние γ на фазовую скорость нулевой нормальной волны (рис. 6) и отношение c_{Φ}/c (рис. 7). Очевидно, что увеличение потерь в донном слое приводит к некоторому возрастанию этих параметров. Заметим, однако, что в количественном отношении наблюдаемые изменения весьма незначительны.

ЗАКЛЮЧЕНИЕ

Результаты численного моделирования создают предпосылки для использования предложенного метода для оценок структуры звуковых полей на сложных трассах распространения без проведения дорогостоящих гидроакустических экспериментов.

Представленные формулы позволяют исследовать звуковое поле в слоистом волноводе на абсолютно жестком основании с учетом затухания в "жидком" грунте. С ростом глубины данная модель вырождается в волновод Пекериса, хорошо зарекомендовавший себя при аналитическом описании характеристик звукового поля [1–3,7]. Такой предельный переход подтверждает адекватность исследуемой слоистой модели гидроакустического волновода.

Известно, что дальнее поле для волновода Пекериса определяется дискретной частью спектра. Согласно полученным в нашем исследовании результатам, собственные числа и функции для модели гидроакустического плоскослоистого волновода на жестком основании начинают совпадать с соответствующими величинами в волноводе Пекериса даже при небольших значениях глубины слоя

Рис. 6. Зависимость фазовой скорости нулевой нормальной волны c_{Φ} от коэффициента затухания $\gamma~(\omega\!=\!100~{\rm pag/c})$

осадков. Это позволяет в дальнем поле для описания частичных областей [9] при моделировании неровностей дна использовать более простую, по сравнению с волноводом Пекериса, модель плоскослоистого волновода на жестком основании.

Изучение поля нулевой нормальной волны в водном слое позволяет судить об акустических характеристиках подводного грунта. Зная экспериментальное распределения давления и его фазы по глубине водного слоя, можно определить параметры осадочных пород. Даны количественные оценки влияния толщины жидкого грунта и потерь в нем на акустические характеристики поля, порождаемого низкочастотным звуковым источником.

- 1. Толстой И., Клей К. С. Акустика океана.
– М.: Мир, 1969.– 304 с.
- 2. Бреховских Л. М. Волны в слоистых средах.– М.: Наука, 1973.– 344 с.

Рис. 7. Зависимость c_{Φ}/c от коэффициента затухания γ

- 3. Pekeris C. L. Theory of propagation of explosive soundin shallow water // Propagation of Sound in the Ocean, Geol. Soc. Amer., Memoir 27.– New York, 1948.– P. 1–117.
- Олвер Ф. Асимптотика и специальные функции.– М.: Наука, 1990.– 528 с.
- 5. Абрамовиц М., Стиган И. Справочник по специальным функциям.– М.: Наука, 1979.– 832 с.
- 6. Папков С. О., Папкова Ю. И., Ярошенко А. А. Моделирование неровностей донных слоев в гидроакустическом волноводе на основе метода нормальных мод // Акуст. вісн.– 2002.– 5, № 3.– С. 61– 71.
- Buckingham M. J., Giddens E. M. On the acoustic field in a Pekeris waveguide with attenuation in the bottom half space // J. Acoust.Soc. Amer.- 2006.-119, № 1.- P. 123-142.
- Zhang Z. Y., Tindle C. T. Complex effective depth of the ocean bottom // J. Acoust.Soc. Amer.– 1993.– 93, № 1.– P. 205–213.
- Грінченко В. Т., Вовк І. В., Маципура В. Т. Основи акустики.– К.: Наук. думка, 2007.– 640 с.