ФАЗО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ФОРМ КОЛЕБАНИЙ ПЬЕЗОКЕРАМИЧЕСКИХ ЦИЛИНДРИЧЕСКИХ ПРИЕМНИКОВ ЗВУКА ПРИ РАЗЛИЧНЫХ ВИДАХ ЭЛЕКТРОДИРОВАНИЯ В УСЛОВИЯХ СВЯЗАННОСТИ

А. В. КОРЖИК

Национальный технический университет Украины "КПИ", Киев

Получено 12.10.2009

С использованием решения сквозной задачи о приеме звуковых волн пьезокерамическим круговым тонкостенным преобразователем разрезными электродами и раздельным электрическим нагружением рассчитаны фазо-частотные характеристики его модовых составляющих. Фазо-частотные характеристики приведены для различных углов раскрыва электродов.

З використанням розв'язку наскрізної задачі про прийом звукових хвиль п'єзокерамічним круговим тонкостінним перетворювачем з розрізними електродами й роздільним електричним навантаженням розраховані фазо-частотні характеристики його модових складових. Фазо-частотні характеристики наведені для різних кутів розхилу електродів.

The phase-frequency characteristics of the modal components of a thin-walled piezoceramic circular transducer with sectional electrodes and separated electric load have been calculated using the solution of the "through" problem on sound receiving by such device. Mentioned phase-frequency characteristics are presented for various opening angles of the electrodes.

введение

Данная работа продолжает тематику исследований частотных характеристик таких многомодовых колебательных систем как цилиндрические пьезокерамические круговые тонкостенные преобразователи, на поверхности которых нанесены электроды с определенным углом раскрыва. Электроды нагружены на произвольные независимые электрические нагрузки. Определение общих амплитудно-частотных зависимостей модовых составляющих таких устройств в рамках традиционных подходов к расчетам приемных пьезокерамических преобразователей было выполнено в работе [1] и конкретизировано в работе [2] для наиболее часто встречающихся типов электродирования поверхностей преобразователей в виде тонкостенных пьезокерамических круговых цилиндрических оболочек.

В силу использования методологии связанных полей в системе "акустическая среда – оболочка – электрическая нагрузка", при решении задачи о приеме звука данным преобразователем сведения об амплитудно-частотных зависимостях форм колебаний [2] следует дополнить фазовыми соотношениями, что даст возможность оценить характер результирующего сигнала на нагрузке соответствующего электрода. При этом цель исследования состоит в определении особенностей фазочастотных распределений для первых пяти форм колебаний электроупругого цилиндрического приемника в зависимости от величины электрода при падении на приемник плоской акустической волны.

Следует отметить, что сведения о фазочастотных характеристиках (ФЧХ) многомодовых систем представлены в публикациях, посвященных обсуждаемой тематике, недостаточно полно. Среди наиболее близких к выбранному направлению исследований следует отметить работы [3– 6] в части эффектов пространственно-частотной фильтрации в системах взаимодействующих рассеивателей, вопросов использования наполнителей и вставок в цилиндрических источниках, а также излучающих систем в виде соосного набора цилиндрических колец, которые электрически запитываются независимо друг от друга.

Изложенное позволяет считать выбранную тематику исследований перспективной, позволяющей детализировать ситуацию приема звука многомодовыми системами в условиях электродирования и нагружения, приближенных к реальным.

Рис. 1. Пьезокерамический преобразователь с двумя парами электродов $(2\gamma_{os}; 2\gamma'_{os})$ и раздельными электрическими нагрузками Z_{11}, Z_{12}

1. К ПОСТАНОВКЕ ЗАДАЧИ

Расчеты ФЧХ проведены на основе постановок и решений задач из области стационарной гидроэлектроупругости (см., например, [7,8]) с привлечением методологии учета способа электродирования поверхности преобразователя, приведенной в работах [2,8]. Постановочная часть и решение задачи в части акустических характеристик детально рассмотрены в статьях [9,10]. Пьезокерамический материал, среда, тип и величина электрических нагрузок, количества членов разложения полей и рядов Фурье, а также угол падения волны α и геометрические размеры оболочки (радиус r_{os} и толщина h_{os} – см. рис. 1) соответствуют заданным и приведены в публикации [2].

При расчетах ФЧХ углы раскрыва электродов $2|\gamma'_{os}|=2|\gamma_{os}|$ выбирались так: $2|\gamma'_{os}|=180^{\circ}, 120^{\circ}, 90^{\circ}, 60^{\circ}$. При этом значения резонансных частот модовых составляющих f_{0n} (n=0,1,2,3,4) были $f_{00} \approx 8.2$ кГц, $f_{01} \approx 11.65$ кГц, $f_{04} \approx 35.6$ кГц, $f_{02} \approx 18.8$ кГц, $f_{03} \approx 27.25$ кГц.

2. АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Результаты расчетов ФЧХ цилиндрического кругового электроупругого приемника для различных видов электродирования приведены на рис. 2.

Исходя из совпадения фаз напряжений и токов в нагрузке Z_n (для рассмотренной ситуации электрического нагружения $Z_n = R$), будем считать, что полученные расчетные Φ ЧХ электрического напряжения аналогичны Φ ЧХ токов в нагрузке с точностью до коэффициента 1/R. Амплитудночастотные характеристики (АЧХ) мод предлагается рассматривать по результатам расчетов [2].

Отметим, что все ФЧХ, приведенные для своих форм колебаний, весьма схожи и для каждой из них может быть выделено три области – низкочастотная, резонансная и высокочастотная, определяемые приблизительно так:

- $f/f_{0n} < 0.66$ для первой;
- 0.6 < f/f_{0n} < 1.66 для второй;
- $f/f_{0n} > 1.6$ для третьей.

Здесь f_{0n} – частота резонанса *n*-ой моды колебаний рассматриваемой цилиндрической оболочки.

Как видно из графиков, в низкочастотной области наблюдаются относительно малые изменения фазы. Известно, что с уходом частоты в область нижних частот (вдали от резонанса) механический импеданс преобразователя типа оболочки увеличивается и имеет упругий характер [6]. Сопротивление излучения при этом падает. Известно также, что для первой формы колебаний механический импеданс оболочки-преобразователя имеет инерционный характер во всем диапазоне частот [4], а преобладание реактивной компоненты импеданса излучения над активной (в том числе и для высших из рассматриваемых мод) в области низких частот сохраняется. Таким образом, в силу связанности колебаний системы разнородные свойства составляющих полного импеданса преобразователя обуславливают не только частотно-зависимую изменчивость его характера но и разные диапазоны изменения значений фаз в дорезонансных областях. С ростом номера моды нижние границы резонансных областей перемещаются вверх по оси частот, характеризуя своеобразную ширину диапазона "неэффективности" использования мод высших порядков с точки зрения преобладания реактивной составляющей импеданса излучения над активной.

В высокочастотной (третьей) области наблюдается тенденция к совпадению фаз электрических напряжений (токов) для всех n форм колебаний. Очевидно, это поясняется выравниванием фаз колебаний участков поверхности преобразователяоболочки вследствие сближения узловых линий при уменьшении длины волны. При этом общий характер изменения фазы с увеличением частоты связывается с изменением углового распределения по поверхности оболочки полного звукового поля

Рис. 2. Фазо-частотные характеристики модовых составляющих электроупругого преобразователя-оболочки для различных углов раскрыва электрода: $a - 2|\gamma'_{os}| = 180^\circ; \ 6 - 2|\gamma'_{os}| = 120^\circ; \ B - 2|\gamma'_{os}| = 90^\circ; \ r - 2|\gamma'_{os}| = 60^\circ;$ $- n = 0, \ - - n = 1, \ - \cdot - - n = 2, \ - \cdot - n = 3, \ - \cdot \cdot - n = 4$

(как результата суперпозиции полей падающей и рассеянной волн) и ростом собственного механического импеданса преобразователя при изменении его характера с упругого на инерционный.

Заметим также, что для каждой кривой в высокочастотной области отмечается изменение фазы Ψ_{0n} (n=0,1,2,3,4) более чем на -90° относительно некоторого нулевого значения Ψ_{0n} для данной моды. Это говорит о том, что для соответствующей частотной области действительная компонента полного механического импеданса преобразователя приобретает отрицательный знак. Схожая ситуация возникает из-за взаимовлияния по акустическому полю цилиндрических преобразователей в виде системы из соосного набора пьезокерамических колец [6]. При этом вектор колебательной скорости переходит в левую полуплоскость комплексной плоскости. Как следствие, при удалении от резонанса *n*-ой моды колебаний в область верхних частот модовые составляющие, начиная с частоты f_{0n} (n+2)-ой моды, перестают насыщать колебательный процесс энергией. Кроме того, существенное уменьшение ширины резонансной кривой *n*-ой моды на частоте резонанса (n+2)-ой моды [2] сопровождается значительным ослаблением связанности колебаний.

Наиболее интересна вторая (резонансная) область. Она характеризуется сопоставимостью собственных механических сопротивлений преобразователя и сопротивлений излучения для каждой из рассматриваемых мод. При этом интервал изменения фазы $\Delta \Psi_n$ оказывается наименьшим для нулевой моды – $\Delta \Psi_0 = 18^{\circ}$ при $2|\gamma_{os}'| = 180^{\circ}$ и $\Delta \Psi_0 = 24^{\circ}$ при $2|\gamma_{os}'| = 60^{\circ}$ (см. рис. 2, а и в). Наибольший диапазон изменения характерен для наивысшей из рассматриваемых мод – четвертой ($\Delta \Psi_0 = 30^\circ$ для любых $2|\gamma'_{os}|$). Объяснением этому может служить увеличение диапазона изменения реактивной составляющей сопротивления излучения $\mathbf{Im}(Z_{\mu 3 \pi n})$ при уменьшении диапазона изменения активной составляющей $\operatorname{\mathbf{Re}}(Z_{\operatorname{изл} n}) \rightarrow \rho c$ при $kr_{os} > n$.

Кроме того, ФЧХ в пределах резонансной области характеризуется неоднократным переходом через нулевое (для данной моды) значение фазы Ψ_{0n} , что говорит о сопутствующем много-кратном изменении характера полного механического сопротивления системы с упругого на инерционный и наоборот. Точки пересечения фазовой кривой с этой условно-средней горизонтальной линией соответствуют резонансным частотам системы "акустическая среда – оболочка – электрическая нагрузка". Частоты f_{00} , f_{01} , f_{02} , f_{03} , f_{04} для мод с n = 0, 1, 2, 3, 4 указаны на рис. 2. Значения нулевых фаз Ψ_{0n} соответствуют жирным маркерам, нанесенным на соответствующие кривые.

Таким образом, комплекс "акустическая среда – оболочка – электрическая нагрузка" представляет собой систему с некоторой полосой, определяемой для полученных резонансных кривых форм колебаний. Такая полоса отлична от полосы резонансной кривой АЧХ системы с одной степенью свободы в условиях отсутствия связанности. Именно связанность смежных мод обуславливает сложное акусто-механическое поведение приемников в резонансной области для каждой из рассматриваемых мод.

Заметим также, что значения фаз Ψ_{0n} отличаются друг от друга на 90°. Наиболее показательны в этом отношении рис. 2, δ и r. Очевидно, это объясняется представлением падающей плоской волны в виде разложения по цилиндрическим волновым функциям и учетом множителя i^n (n – номер моды), [11]. При этом исходным значением фазы Ψ_{00} можно считать $\Psi_{00} = 270^{\circ}$, определяемое для резонанса нулевой моды и электрода наибольшей площади, которая соответствует углу раскрыва $2|\gamma'_{os}| = 180^{\circ}$. Характерно, что при переходе от одного типоразмера электрода (с углом раскрыва $2|\gamma_{os}'|)$ к другому фазовые соотношения между модами несколько изменяются. Так, при переходе угла раскрыва электрода через критическое значение (обеспечивающее подавление той или иной моды [1,2], например, n=3при $2|\gamma'_{os}| = 120^{\circ}$ или n = 4 при $2|\gamma'_{os}| = 90^{\circ}$), амплитудные и фазовые кривые активируются вновь, но со смещением на 180° (см. рис. 2, а, в для моды n=3 и рис. 2, б, r для моды n=4). Объяснением этому, по-видимому, может быть то, что изменение длины дуги окружности, соответствующей электроду заданного раскрыва, вызывает изменение соотношения угловых распределений противофазных и синфазных участков колеблющейся поверхности преобразователя с преобладанием перемещений поверхности определенного знака.

Кроме того, увеличение номера моды приводит к увеличению крутизны фазовой кривой вблизи значения резонанса (см. рис. 2, а и г). Это объясняется более высокой добротностью высших форм колебаний оболочки по сравнению с низшими.

выводы

- 1. ФЧХ первых пяти модовых составляющих рассмотренной системы "акустическая среда оболочка электрическая нагрузка" в заданном диапазоне частот имеют схожий характер, отличаясь расположением резонансной области на оси частот, величиной интервала изменения фазы и степенью крутизны фазовой кривой в окрестности резонанса соответствующей моды. При этом крутизна фазовой кривой в окрестности резонанса, расположение области *n*-ой моды и увеличение интервала изменения фазы $\Delta \Psi_n$ в ней связаны с увеличением номера моды и, соответственно, изменением соотношения $\operatorname{Im}(Z_{изл\,n})$ к $\operatorname{Re}(Z_{изл\,n})$.
- 2. Каждая ФЧХ позволяет определить область верхних частот, в которой эффективность рассматриваемой моды утрачивается, а связанность со смежными (*n*+2) модами уменьшается.

- 3. Изменение площади (угла раскрыва) электрода при переходе через "критический" размер, обеспечивающий подавление той или иной моды, приводит к изменению значения фазы Ψ_{0n} подавленной и вновь электромеханически активизированной моды на 180°.
- 1. Аронов Б. С. Электромеханические преобразователи из пьезоэлектрической керамики.– Л.: Энергоатомиздат, 1990.– 271 с.
- Коржик А. В. Амплитудно-частотные характеристики некоторых форм колебаний пьезокерамических цилиндрических приемников звука при различных видах электродирования в условиях связанности // Акуст. вісн.– 2009.– 12, N 3.– С. 33–40.
- Лейко А. Г., Шамарин Ю. Е., Ткаченко В. П. Подводные акустические антенны. Методы расчета звуковых полей.– К.: Аванпост прим, 2000.– 320 с.
- Вовк І. В., Олійник В. Н. Випромінювання звуку циліндричною п'єзокерамічною оболочкою з секторіальною жорсткою вставкою // Доп. АН України.– 1993.– N 10.– С. 64–68.

- 5. Гринченко В. Т., Вовк И. В. Волновые задачи рассеяния звука на упругих оболочках.– К.: Наук. думка, 1986.– 240 с.
- 6. Грінченко В. Т., Вовк І. В., Маципура В. Т. Основи акустики.– К.: Наук. думка, 2007.– 640 с.
- Дідковський В. С., Лейко О. Г., Савін В. Г. Електроакустичні п'езокерамічні перетворювачі.– Кіровоград: Імекс-ЛТД, 2006.– 448 с.
- Коржик О. В., Лейко О. Г. Взаємодія плоскої акустичної хвилі з лінійною решіткою електропружних циліндричних перетворювачів // Наук. вісті НТУУ "КПГ".– 2001.– N 4.– С. 106–114.
- Коржик О. В., Лейко О. Г. Формування характеристик напрямленності одиночного приймального електропружнього циліндричного перетворювача з розрізними електродами // Наук. вісті НТУУ "КПП".– 2005.– N 1.– С. 50–55.
- Коржик О. В., Лейко О. Г. Дослідження акустичних характеристик одиночного п'єзокерамічного перетворювача при розв'язанні задачі прийому в наскрізній постановці // Наук. вісті НТУУ "КПІ".– 2002.– N 5.– С. 105–113.
- Шендеров Е. Л. Волновые задачи гидроакустики.– Л.: Судостроение, 1972.– 352 с.