УДК 532.595

СОБСТВЕННЫЕ КОЛЕБАНИЯ ЖИДКОСТИ В УСЕЧЕННЫХ КОНИЧЕСКИХ БАКАХ

И. А. ЛУКОВСКИЙ, А. В. СОЛОДУН, А. Н. ТИМОХА

Институт математики НАН Украины, Киев

Получено 16.07.2006

В работе предложены вариационные методы решения спектральной задачи, возникающей при свободных колебаниях (плесканиях) жидкости в усеченных конических баках кругового поперечного сечения. Приближенные решения найдены в аналитическом виде методом Ритца – Трефтца по двум типам координатного базиса. Для различных конфигураций усеченных конических баков (прямых и перевернутых) по обеим вариационным схемам проведены численные эксперименты по определению частотных параметров свободных колебаний жидкости. Проведено сравнение расчетных данных между собой, а также с аналогичными результатами других авторов, полученными преимущественно для конических баков с малыми углами раствора.

У роботі запропоновані варіаційні методи розв'язання спектральної задачі, яка виникає при вільних коливаннях (хлюпаннях) рідини у зрізаних конічних баках кругового поперечного перерізу. Наближені розв'язки знайдені в аналітичному вигляді методом Рітца – Трефтца за двома типами координатного базису. Для різних конфігурацій зрізаних конічних баків (прямих та перевернутих) за обома варіаційними схемами проведено чисельні експерименти з визначення частотних параметрів вільних коливань рідини. Проведено порівняння розрахункових даних між собою, а також з аналогічними результатами інших авторів, одержаними здебільшого для конічних баків з малими кутами розхилу.

The paper deals with proposing the variational methods for solving the spectral boundary value problem occurring at free oscillations (sloshing) of a liquid in truncated conical tanks with circular cross-sections. The approximate solutions are obtained by the Ritz-Treftz methods with respect to the two types of a coordinate basis. Computational experiments for evaluating the natural sloshing frequencies were conducted for various shapes of truncated conical tanks (both the right and inverted ones). The numerical data are compared with the results by other authors, that were predominantly obtained for the conical tanks with small semi-apex angles.

введение

Баки в виде усеченного конуса часто используются в технике и гражданском строительстве как самостоятельные конструкции или в качестве составных частей емкостей более сложной конфигурации (например, в сочетании с цилиндрическими или сферическими формами).

При проектировании конструкций, имеющих в своем составе значительные массы жидких грузов, возникает целый комплекс проблем, связанных с их прочностью и устойчивостью. На первый план здесь выступают задачи определения частот и форм свободных колебаний жидкости, а также сил взаимодействия между стенками баков и жидкостью. Последние играют важную роль при составлении уравнений движения механической системы в целом и прогнозировании на их основе динамического поведения конструкции при воздействии на нее различных внешних возмущающих факторов (вибрационного, сейсмического происхождения и пр.). Традиционно эти вопросы возникают в контексте развития авиационной и ракетнокосмической техники. Кроме того, с ними приходится сталкиваться при создании танкеров для транспортировки нефтепродуктов и сжиженных газов, а также при прогнозировании прочности и устойчивости железнодорожных цистерн.

По-видимому, первые исследования колебаний жидкости в конических баках были выполнены в связи с необходимостью учета гидродинамических сил взаимодействия топлива с корпусами жидкостных ракет. Особое внимание при этом уделялось нахождению основных частот и форм свободных колебаний топлива, представляющих наибольший интерес для определения главного вектора и главного момента гидродинамических сил, приложенных к корпусу ракеты.

В последние годы исследования по динамике твердых тел с жидкостью пополнились новыми постановками задач в связи с проектированием новых наземных жидкостно-наполненных механических объектов в виде водонапорных башен, состоящих из цилиндрических резервуаров с коническим дном (рис. 1). Эти работы направлены на обеспечение надежного функционирования таких систем в экстремальных условиях, в первую очередь, при сейсмических воздействиях.

В общем случае не существует точных методов решения задачи о колебаниях жидкости в конических баках. Исключение составляют отдельные случаи баков в форме "перевернутого" кругового конуса с определенными значениями угла полураствора θ_0 . На первый такой случай – $\theta_0 = 45^\circ$,

Рис. 1. Мегалитровые водонапорные башни с коническими баками: а – бетонный бак в Бойнтон Бич, Флорида, США; б – стальной бак в Сиднее, имеющий форму бокала с коническим дном и удерживающий до 3.2 мегалитра

m = 1, указал Левин [1] (здесь m обозначает число волн в окружном направлении). Позже в работе [2] были приведены другие примеры, для которых, как и в [1], существуют точные решения этой задачи по определению только основной частоты и формы собственных колебаний жидкости. Как оказалось, эти случаи относятся к семейству баков с углом полураствора $\theta_0 = \operatorname{arctg} \sqrt{m}$. В монографиях [3, 4] упомянутые решения широко использованы для независимого контроля численных результатов при нахождении приближенными методами частот и присоединенных масс жидкости для конических баков, разбитых глухими радиальными перегородками на независимые отсеки.

Отметим также, что в некоторых случаях для решения задач о колебаниях жидкости в конических баках удается использовать метод разделения переменных, оставаясь при этом в рамках гипотез линейной теории. Ограничиваясь малыми значениями угла конусности, в сферической системе координат соответствующие краевые задачи гидродинамики можно сформулировать при отождествлении плоской невозмущенной поверхности жидкости с мало отличающейся от нее сферической поверхностью в случаях как "перевернутого", так и прямого кругового конуса со сферическим днищем. С помощью метода разделения переменных точные решения задачи удается представить через степенные функции и присоединенные функции Лежандра первого и второго рода. Впервые это было сделано Докучаевым [5], а позже Бауером [6]. Об особенностях применения этих результатов в теории движения тел с жидкостью речь идет в работах [2-7]. Соответствующие экспериментальные данные приведены в статьях Микишева и Дорожкина [8], а также Бауэра [6]. В 1970–1980-ые годы исследования по теории колебаний жидкости в конических баках снова активизировались в связи с рассмотрением аналогичных задач в нелинейной постановке [9–13]. Для развития модальных методов решения нелинейных задач требовались качественно новые приближенные решения краевых задач линейной теории. Одно весьма обременительное требование, предъявляемое к этим решениям, связано с необходимостью точного выполнения условия неперетекания

$$\frac{\partial \varphi}{\partial \nu} = 0$$

на всей твердой стенке бака. Другое важное ограничение вытекает из представления форм колебаний жидкости и производных от них в аналитическом виде. Решения с такими свойствами удается построить вариационными методами с использованием специальных неконформных отображений, переводящих конические области в цилиндрические в подходящей криволинейной системе координат [9,12,14,15]. Опыт использования подобных решений при исследовании задачи о колебаниях жидкости в неусеченных конических баках подтверждает высокую эффективность упомянутых численно-аналитических подходов [13, 15].

Ряд исследований, относящихся к линейной теории колебаний жидкости в конических баках, выполнен в последние годы в связи с проектированием новых типов водонапорных башен (см., например, [16–23]). Предложенные здесь приближенные алгоритмы определения собственных ча-

Рис. 2. Гидростатическое положение жидкости в вертикальных круговых усеченных ^- и V-образных конических баках

стот и форм колебаний, опирающиеся, главным образом, на методы конечных и граничных элементов, оказались эффективными в этом классе линеаризованных задач. Однако их непосредственное использование для решения нелинейных проблем о резонансных взаимодействиях в системе "твердое тело – жидкость" представляется проблематичным.

В данной работе обсуждаются два численноаналитических подхода к определению частот и форм собственных колебаний жидкости в усеченных конических баках, основанные на вариационных формулировках соответствующих краевых задач. В качестве координатных функций в вариационном методе Ритца-Трефтца используются частные решения полиномиального типа или гармонические функции, найденные методом разделения переменных в специальной криволинейной системе координат. Эти алгоритмы реализованы в широком диапазоне геометрических параметров усеченных конусов (углов раствора и относительных глубин заполнения жидкостью). Результаты вычислительных экспериментов, приведенные в виде таблиц и графических зависимостей, дают полное представление о практической сходимости предложенных методов и границах их применимости. Приближенные решения найдены в аналитическом виде, пригодном для их использования при построении малоразмерных нелинейных модальных систем на основе результатов работ [9,12-14,24-29],включая и случай усеченных конических баков, разбитых сплошными радиальными перегородками на независимые отсеки.

Обсуждается перспектива развития нелинейных модальных методов, а также вывод формул для расчета резонансных гидродинамических нагрузок.

1. ПОСТАНОВКА ЗАДАЧИ

1.1. Дифференциальная и вариационная формулировки

Рассмотрим безвихревые волновые движения идеальной несжимаемой жидкости, частично заполняющей покоящийся абсолютно жесткий конический бак с углом полураствора θ_0 . Гидростатическое положение жидкости под действием сил тяжести совпадает с областью Q_0 , изображенной на рис. 2. Вектор сил гравитации направлен вниз вдоль оси конуса. Смачиваемые боковые стенки сосуда обозначены через S_1 , дно (основание) бака – через S_2 , а невозмущенная (гидростатическая) свободная поверхность жидкости – через Σ_0 . Начало декартовой системы координат Oxyz размещено в условной вершине конуса O, причем ось Oxнаправлена вертикально вверх.

В качестве характерного линейного размера выбран радиус r_0 (радиус дна для \wedge -образного и свободной поверхности для \vee -образного конуса). Соотношение между радиусом невозмущенной свободной поверхности и основанием усеченного конуса r_1/r_0 становится геометрической характеристикой глубины заполнения бака. В частности, предельный случай $r_1 \rightarrow 1$ влечет за собой $h \rightarrow 0$. При фиксированном же r_1 глубина h стремится к нулю, если $\theta_0 \rightarrow \pi/2$.

Как известно, линеаризованная задача о малых свободных колебаниях жидкости имеет вид [30,31]

$$\Delta \phi = 0 \quad \mathbf{B} \quad Q_0,$$
$$\frac{\partial \phi}{\partial \nu} = 0 \quad \mathbf{Ha} \quad S,$$
$$(1)$$
$$f \qquad \partial \phi$$

$$\frac{\partial \phi}{\partial x} = \frac{\partial f}{\partial t}, \qquad \frac{\partial \phi}{\partial t} + gf = 0$$
 на Σ_0

при дополнительном условии

0

$$\int_{\Sigma_0} \frac{\partial \phi}{\partial x} dS = 0, \tag{2}$$

где $\phi(x, y, z, t)$ – потенциал скоростей; x = f(y, z, t) – уравнение возмущенной свободной поверхности; $\vec{\nu}$ – орт внешней нормали к границе $S = S_1 \cup S_2$; \vec{g} – ускорение сил тяжести.

Кроме этого, общая постановка эволюционной краевой задачи (1) предполагает подчинение ее решений начальным условиям

$$f(y, z, t_0) = F_0(y, z),$$

$$\frac{\partial f}{\partial t}(y, z, t_0) = F_1(y, z),$$
(3)

где некоторые известные функции F_0 и F_1 задают начальное отклонение свободной поверхности жидкости и распределение скоростей на ней в начальный момент времени $t=t_0$. Путем дифференцирования второго соотношения по t два условия на Σ_0 можно заменить одним уравнением вида

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial x} = 0 \tag{4}$$

и свести формулировку (1) к следующей краевой задаче: $\Delta \phi = 0$ в Q_0 ,

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial x} = 0 \quad \text{Ha} \quad \Sigma_0, \tag{5}$$
$$\frac{\partial \phi}{\partial \nu} = 0 \quad \text{Ha} \quad S.$$

1.2. Задача о собственных колебаниях и соответствующая ей спектральная задача

Особый практический интерес представляет нахождение собственных гармонических колебаний жидкости (стоячих волн), которые описываются в этом случае решениями задачи (1) вида

$$\phi(x, y, z, t) = \psi(x, y, z) \exp(i\sigma t), \qquad i^2 = -1, \quad (6)$$

причем частота собственных колебаний σ и соответствующая ей форма (мода) $\psi(x, y, z)$ находятся из следующей спектральной задачи:

$$\Delta \psi = 0 \quad \text{B} \quad Q_0,$$

$$\frac{\partial \psi}{\partial x} = \varkappa \psi \quad \text{Ha} \quad \Sigma_0,$$

$$\frac{\partial \psi}{\partial \nu} = 0 \quad \text{Ha} \quad S,$$

$$\int_{\Sigma_0} \frac{\partial \psi}{\partial x} dS = 0.$$
(7)

Здесь параметр \varkappa – частотный параметр, который определяется соотношением

$$\varkappa = \sigma^2/g. \tag{8}$$

Для задачи на собственные значения (7) существует бесконечная последовательность решений \varkappa_n

 $0 < \varkappa_1 \leq \varkappa_2 \leq \ldots \leq \varkappa_n \leq \ldots,$

сходящаяся на бесконечности ($\varkappa_n \to \infty, n \to \infty$). При этом каждому собственному значению \varkappa_n соответствует конечное число собственных функций

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

 $\psi_n(x, y, z)$ [3, 30]. Система собственных функций ψ_n вместе с константой образует на невозмущенной свободной поверхности Σ_0 полную систему функций. Это свойство играет фундаментальную роль в теории колебаний жидкости.

Задача на собственные значения с параметром в граничном условии (7) допускает соответствующую эквивалентную ей вариационную формулировку, связанную с функционалом

$$K(\psi) = \frac{\int\limits_{Q_0} (\nabla \psi)^2 dQ}{\int\limits_{\Sigma_0} \psi^2 dS},$$
(9)

определенном на классе функций $\psi \in W_2^1(Q_0)$ при дополнительном условии

$$\int_{\Sigma_0} \psi dS = 0.$$

В соответствии с общей схемой, изложенной в работах [3,30], вариационная задача на минимум для функционала (9) позволяет последовательно определить все собственные числа и собственные функции задачи (7), обладающие свойствами обобщенных решений в смысле интегрального соотношения

$$\int_{Q_0} (\nabla \psi_n, \nabla \eta) dQ - \varkappa_n \int_{\Sigma_0} \psi_n \eta d\Sigma_0 = 0$$
(10)

при любой функции $\eta \in W_2^1(Q)$.

В соответствии с методикой Ритца–Трефтца для первого собственного значения \varkappa_1 и собственной функции ψ_1 справедливо

$$\varkappa_1 = \min F(\psi), \qquad \psi \in W_2^1(Q) \tag{11}$$

при условии

$$\int_{\Sigma_0} \psi^2 d\Sigma_0 = 1.$$

Для последующих собственных значений выполняется

$$\varkappa_n = \min F(\psi), \qquad \psi \in W_2^1(Q), \qquad (12)$$

при условии

$$\int_{\Sigma_0} \psi^2 d\Sigma_0 = 1$$

и дополнительных условиях ортогональности

$$\int_{\Sigma_0} \psi \psi_k d\Sigma_0 = 0, \qquad k = 1, \dots, n-1.$$

45

К решению вариационной задачи применим метод Ритца. Систему координатных функций выберем в пространстве $W_2^1(Q)$ при условии линейной независимости ее элементов и полноты. Приближенные решения ищем в виде линейной комбинации

$$\psi_n = \sum_{k=1}^n a_k w_k, \qquad w_k \in W_2^1(Q).$$
(13)

Для определения коэффициентов a_k из условия минимума функционала $K(\psi)$ (9) получаем систему Ритца

$$\sum_{k=1}^{n} a_k (\alpha_{ik} - \varkappa \beta_{ik}) = 0, \qquad i, k = 1, \dots, n, \quad (14)$$

где

$$\alpha_{ik} = \int_{Q_0} (\nabla w_i, \nabla w_k) dQ,$$

$$\beta_{ik} = \int_{\Sigma_0} w_i w_k d\Sigma_0.$$
(15)

Приближенные значения собственных чисел \varkappa_n определяем из уравнения

$$\det |\alpha_{ik} - \varkappa \beta_{ik}| = 0, \tag{16}$$

которое представляет собой необходимое условие разрешимости системы линейных алгебраических уравнений (14).

2. ВАРИАЦИОННЫЙ МЕТОД РИТЦА-ТРЕФТЦА

Использование методов, базирующихся на общей схеме Ритца–Трефтца, для решения спектральной задачи (7) предполагает представление приближенного решения ψ в виде конечной суммы базисных гармонических функций с неизвестными множителями. Подстановка такого решения в функционал (9) и использование необходимого условия экстремума сводит проблему определения минимального \varkappa к подсчету минимального ненулевого собственного значения матричной задачи

$$(A - \varkappa B)\boldsymbol{a} = \boldsymbol{0},$$

где A и B – две неотрицательно определенные симметричные матрицы с элементами (15). Собственные векторы матричной проблемы, используемые в качестве неизвестных множителей в исходном представлении ψ , дают приближения соответствующих собственных функций.

Основной сложностью методов, построенных на схеме Ритца – Трефтца, является выбор эффективного функционального базиса. Полнота известных наборов гармонических функций существенно зависит от геометрии Q_0 . Как известно, универсальным полным семейством функций для любой звездной области Q_0 являются лишь частные решения полиномиального типа (Луковский и др. [30]).

2.1. Частные решения полиномиального типа

Перейдем к цилиндрической системе координат (X, ξ, η) :

$$x = X + X_0, \quad y = \xi \cos \eta, \quad z = \xi \sin \eta.$$
 (17)

Сдвиг вдоль вертикальной оси X_0 подобран таким образом, чтобы начало цилиндрической системы совпадало с центром невозмущенной свободной поверхности. Представим решение задачи (7) в виде

$$\psi(x, y, z) = \varphi_m(X, \xi) \frac{\sin m\eta}{\cos m\eta} , \qquad (18)$$

$$m=0,1,2\ldots$$

Неизвестные функции $\varphi_m(X,\xi)$ определяются как решения двумерных краевых спектральных задач

$$\frac{\partial}{\partial X} \left(\xi \frac{\partial \varphi_m}{\partial X} \right) + \frac{\partial}{\partial \xi} \left(\xi \frac{\partial \varphi_m}{\partial \xi} \right) - \frac{m^2}{\xi} \varphi_m = 0 \quad \text{B} \quad G,$$

$$\frac{\partial \varphi_m}{\partial X} = \varkappa_m \varphi_m \quad \text{Ha} \quad L_0, \qquad (19)$$

$$\frac{\partial \varphi_m}{\partial \nu} = 0 \quad \text{Ha} \quad L,$$

$$|\varphi_m(X,0)| < \infty, \qquad \int_{L_0} \xi \frac{\partial \varphi_0}{\partial x} d\xi = 0,$$

сформулированных в меридиональном сечении области Q_0 (обозначения приведены на рис. 3, $L = L_1 + L_2$). Совокупность собственных значений исходной трехмерной задачи становится при этом двухпараметрическим множеством \varkappa_{mi} , где индекс *i* задает номер собственного значения задачи (19) при фиксированном значении *m*. Соответствующие собственные функции исходной задачи представляются в виде (18), где под φ_m следует теперь понимать собственную функцию φ_{mi} , соответствующую собственному значению \varkappa_{mi} (*i* = 1, 2, ...).

Существует ряд приемов построения частных решений двумерного в области G уравнения задачи (19). Наиболее интересными и важными для практических целей представляются решения полиномиального типа, полученные исходя из представления [3,9,12,30]

$$w_{k}^{(m)}(X,\xi) = \frac{2(k-m)!}{(k+m)!} R^{k} P_{k}^{(m)}(\mu),$$

$$k \ge m, \qquad R = \sqrt{X^{2} + \xi^{2}}, \qquad \mu = \cos \eta,$$
(20)

где $P_k^{(m)}(\mu)$ – присоединенные функции Лежандра первого рода. Легко проверить, что выражения (20) действительно имеют полиномиальную структуру относительно переменных X и ξ , причем каждый такой полином содержит лишь члены порядка k.

Первые функции из семейства (20) имеют вид

$$w_0^{(0)} = 1, \quad w_1^{(0)} = X, \quad w_2^{(0)} = X^2 - \frac{\xi^2}{2}, \quad \dots$$
$$w_1^{(1)} = \xi, \quad w_2^{(1)} = X\xi, \quad w_3^{(1)} = X^2\xi - \frac{\xi^3}{4}, \quad \dots$$
$$w_2^{(2)} = \xi^2, \quad w_3^{(2)} = X\xi^2, \quad w_4^{(2)} = X^2\xi^2 - \frac{\xi^4}{6}, \quad \dots$$
$$w_3^{(3)} = \xi^3, \quad w_4^{(3)} = X\xi^3, \quad w_5^{(3)} = X^2\xi^3 - \frac{\xi^5}{8}, \quad \dots$$

Частные решения высших по m и k порядков могут быть вычислены с помощью рекуррентных соотношений

$$\frac{\partial w_k^{(m)}}{\partial X} = (k-m)w_{k-1}^{(m)},$$

$$\xi \frac{\partial w_k^{(m)}}{\partial \xi} = k w_k^{(m)} - (k-m)Xw_{k-1}^{(m)},$$

$$(k-m+1)w_{k+1}^{(m)} =$$

$$= (2k+1)Xw_k^{(m)} - (k-m)(X^2 + \xi^2)w_{k-1}^{(m)},$$

$$(k-m+1)\xi w_k^{(m+1)} =$$

$$= 2(m+1)\left((X^2 + \xi^2) w_{k-1}^{(m)} - X w_k^{(m)} \right),$$

весьма полезных при реализации различных приближенных методов.

Частные решения $w_k^{(m)}$, будучи подставленными в формулу (18), приводят к системам гармонических по совокупности переменных x, y, z полиномам различных порядков однородности [30].

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

Рис. 3. Меридиональное сечение ∧- и ∨-образного конусов

2.2. Вариационный метод решения задачи (19)

Приближенный метод решения спектральной задачи (19) методом Ритца – Трефтца связан с ее вариационной формулировкой с использованием функционала [3, 12, 30]

$$\mathcal{J}_{m}(\varphi_{m}) = \int_{G} \left[\xi \left(\frac{\partial^{2} \varphi_{m}}{\partial X^{2}} + \frac{\partial^{2} \varphi_{m}}{\partial \xi^{2}} \right) + \frac{m^{2}}{\xi} \varphi_{m}^{2} \right] dX d\xi - \varkappa_{m} \int_{L_{0}} \xi \varphi_{m}^{2} d\xi$$
⁽²¹⁾

при дополнительном условии

$$\int_{L_0} \xi \varphi_m d\xi = 0.$$

Представим приближенное решение задачи (19) в виде

$$\varphi_m(X,\xi) = \sum_{k=1}^q a_k^{(m)} w_{k+m-1}^{(m)}(X,\xi), \qquad (22)$$

где $a_k^{(m)}$ – подлежащие определению неизвестные постоянные. В классе допустимых функций (22) находятся те, которые доставляют функционалу (21) минимальное значение по совокупности параметров $a_k^{(m)}$. В результате на основе локального условия экстремума

$$\frac{\partial \mathcal{J}_m}{\partial a_k^{(m)}} = 0, \qquad k = 1, 2, \dots, q \tag{23}$$

приходим к матричной спектральной проблеме

$$\det\left(\{\alpha_{ij}^{(m)}\} - \varkappa_m\{\beta_{ij}^{(m)}\}\right) = 0, \qquad (24)$$

позволяющей определить приближенные значения \varkappa_{mn} .

Элементы матриц $\{\alpha_{ij}^{(m)}\}$ и $\{\beta_{ij}^{(m)}\}$ вычисляются **2.3. Сходимость (полиномиальный базис)** по формулам

$$\begin{aligned} \alpha_{ij}^{(m)} &= \int_{0}^{r_{1}} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{X=0} d\xi + \\ &+ \int_{-h}^{0} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial \xi} w_{j+m-1}^{(m)} \right)_{\xi=\mathrm{tg}\,\theta_{0}X-r_{1}} dx - \\ &- \mathrm{tg}\,\theta_{0} \int_{-h}^{0} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{\xi=\mathrm{tg}\,\theta_{0}X-r_{1}} dX - \\ &- \int_{0}^{1} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{X=-h} d\xi, \end{aligned}$$
$$\beta_{ij}^{(m)} &= \int_{0}^{r_{1}} \left(\xi w_{i+m-1}^{(m)} w_{j+m-1}^{(m)} \right)_{X=0} d\xi$$

(для прямого усеченного конуса) и

$$\begin{aligned} \alpha_{ij}^{(m)} &= \int_{0}^{1} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{X=0} d\xi + \\ &+ \int_{-h}^{0} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial \xi} w_{j+m-1}^{(m)} \right)_{\xi= tg \, \theta_0 X+1} dX - \\ &- tg \, \theta_0 \int_{-h}^{0} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{\xi= tg \, \theta_0 X+1} dX - \\ &- \int_{0}^{r_1} \left(\xi \frac{\partial w_{i+m-1}^{(m)}}{\partial X} w_{j+m-1}^{(m)} \right)_{X=-h} d\xi, \end{aligned}$$

(для обратного усеченного конуса).

Для каждого фиксированного значения *m* соотношение (24) – алгебраическое уравнения q-го порядка. Оно имеет q положительных корней $\varkappa_{mn}^{(q)}$ (n = 1, 2, ..., q), которые являются приближениями к q первым собственным значениям \varkappa_{mn} (n =1, 2, ..., q). С ростом q приближенные значения $\varkappa_{mn}^{(q)}$ сходятся сверху к соответствующим значениям \varkappa_{mn} , т.е. $\varkappa_{mn}^{(q)} \ge \varkappa_{mn}$ и $\varkappa_{mn}^{(q)} \to \varkappa_{mn}$ при $q \to \infty$. При этом вектор $a_{kn}^{(q)}$ в проблеме (22) обеспечивает для собственной функции φ_m сходимость, вообще говоря, лишь в слабом смысле.

Большинство численных экспериментов фокусировалось на расчете наиболее важных с практической точки зрения наименьших собственных значений $\varkappa_{m1}, m \ge 0.$

В табл. 1 проиллюстрирована типичная скорость сходимости метода для ∨-образных конусов с углами полураствора $10^\circ \le \theta_0 \le 75^\circ$ при $0.2 \le r_1 \le 0.9$. Хорошо видно, что пять-шесть значащих цифр \varkappa_{m1} стабилизируются уже при q = 14. Относительно медленная сходимость наблюдается лишь к частотному параметру \varkappa_{01} , т.е. для осесимметричных форм. Более того, в последнем случае вычисления теряют устойчивость при q > 17, поэтому в таблице не приведены результаты для q = 20. В то же время, для \varkappa_{11} , определяющего минимальную собственную частоту в системе, метод гарантирует высокую точность приближения при небольшом количестве базисных функций.

При тех же r_1 увеличение угла полураствора $(\theta_0 > 75^\circ)$ также приводит к замедлению сходимости для $m \neq 1$, однако и в этом случае метод гарантирует при $q = 17 \div 20$ практическую (инженерную) точность, т. е. до третьей-четвертой значащей цифры. Аналогично, три – четыре значащие цифры при $q = 17 \div 20$ гарантируются для баков с $r_1 < 0.2$ и $10^\circ \le \theta_0 \le 75^\circ$. Если же радиус основания r_1 мал (усеченный конус близок к неусеченному), приближенные значения \varkappa_{m1} стремятся к расчетным результатам, приведенным в работе [13]. Последнее обстоятельство являлось важным контролем достоверности полученных данных.

В табл. 2 показана сходимость метода для \wedge образных конусов при тех же значениях r_1 и θ_0 , что и в табл. 1. Сравнительный анализ показывает, что для /-образных конусов предлагаемый метод менее эффективен, чем для ∨-образных, в особенности для осесимметричных форм. В этом случае он также численно неустойчив при q > 18. Сравнимые по точности результаты достигаются лишь для $r_1 \ge 0.5$, где восемнадцать – двадцать базисных функций стабилизируют четыре-пять значащих цифр. Однако уже для $r_1 \le 0.2, q = 17 \div 20$ удается обеспечить лишь две значащие цифры, и то лишь для минимального собственного значения \varkappa_{11} .

Замедленная сходимость метода в случае /образных конусов, по-видимому, связана с наличием сингулярности для первых производных собственных функций ψ_m в угловой точке между L_0 и L_1 (см. результаты Луковского и др. [30] для областей с тупыми угловыми точками). Пополнение частных решений полиномиального типа функциями, которые отражают сингулярный

Табл 1. Сходимость к минимальному собственному значению \varkappa_{m1}
для $m = 0, 1, 2, 3$ в зависимости от количества базисных функций q
в представлении (22). Случай ∨-образного усеченного конуса
с углом полураствора $ heta_0\!=\!30^\circ,r_1$ – радиус дна

q	$r_1 = 0.2$	$r_1 = 0.4$	$r_1 = 0.6$	$r_1 = 0.8$	$r_1 = 0.9$		
\varkappa_{01}							
2	5.0324147	4.5778333	4.1523524	3.8055010	2.9613991		
5	3.3947794	3.3922857	3.3848650	3.1411714	2.2003415		
8	3.3856029	3.3855924	3.3818446	3.1388611	2.1974384		
11	3.3856004	3.3855903	3.3818268	3.1387177	2.1972382		
14	3.3855997	3.3855898	3.3818219	3.1386652	2.1971617		
17	3.3855996	3.3855897	3.3818193	3.1386443	2.1971377		
			\varkappa_{11}				
2	1.3436306	1.3357225	1.2999773	1.0072608	0.6073396		
5	1.3044125	1.3017931	1.2541566	0.9344124	0.5425025		
8	1.3043780	1.3016943	1.2540542	0.9338849	0.5422837		
11	1.3043771	1.3016917	1.2539821	0.9338348	0.5422570		
14	1.3043769	1.3016867	1.2539718	0.9338229	0.5422505		
17	1.3043769	1.3016862	1.2539691	0.9338188	0.5422485		
20	1.3043769	1.3016856	1.2539666	0.9338170	0.5422476		
			\varkappa_{21}				
2	2.4437390	2.4243902	2.3866330	2.1913713	1.5720481		
5	2.2635496	2.2633506	2.2550956	2.0156022	1.3619051		
8	2.2631510	2.2630873	2.2550043	2.0149232	1.3609284		
11	2.2631497	2.2630865	2.2549756	2.0148375	1.3608374		
14	2.2631496	2.2630863	2.2549722	2.0148112	1.3608047		
17	2.2631496	2.2630862	2.2549694	2.0148008	1.3607946		
20	2.2631496	2.2630861	2.2549683	2.0147955	1.3607901		
			\varkappa_{31}				
2	3.5331701	3.5208822	3.4590477	3.3161984	2.6974258		
5	3.1815302	3.1812992	3.1795405	3.0471786	2.3290220		
8	3.1802510	3.1802493	3.1790797	3.0467421	2.3270440		
11	3.1802491	3.1802475	3.1790765	3.0466538	2.3268787		
14	3.1802488	3.1802474	3.1790742	3.0466204	2.3268123		
17	3.1802488	3.1802473	3.1790734	3.0466063	2.3267897		
20	3.1802488	3.1802473	3.1790732	3.0465991	2.3267793		

характер решения около угловых точек области, обычно значительно улучшает сходимость вариационного метода. Примеры таких пополнений для двухмерных спектральных задач даны в [30].

Заметим, что обсуждаемый метод демонстрировал быструю сходимость в случае \lor -баков. Он также обеспечивал удовлетворительное приближение высших частотных параметров \varkappa_{m2} и \varkappa_{m3} . В целом он оказался применим и для \land образных конических баков, однако с худшей сходимостью.

2.4. Гармонический базис в криволинейной системе координат

В дополнение к изложенному выше методу Ритца – Трефтца решения спектральной задачи, связанной со свободными колебаниями жидкости в покоящемся баке в форме осесимметричного усеченного конуса, рассмотрим аналогичный вариационный метод, базирующийся на специальном выборе системы координатных функций. С этой целью введем в рассмотрение неконформное пре-

q	$r_1 = 0.2$	$r_1 = 0.4$	$r_1 = 0.6$	$r_1 = 0.8$	$r_1 = 0.9$			
\varkappa_{01}								
8	70.0633660	15.1409382	6.8999855	4.5609914	2.6834108			
10	50.4676244	11.1244924	6.6722662	4.5511501	2.6831172			
12	39.0611122	10.1856319	6.6667035	4.5508771	2.6829323			
14	32.0757185	10.0174466	6.6656782	4.5505895	2.6827960			
16	27.6490413	10.0161238	6.6650577	4.5504215	2.6827514			
18	25.1529873	10.0142571	6.6648859	4.5503494	2.6827297			
			\varkappa_{11}					
8	16.5048540	5.6948327	3.5167816	1.6618146	0.7265554			
10	13.9478118	5.6337297	3.5158610	1.6616835	0.7265070			
12	13.4876669	5.6319036	3.5155474	1.6616084	0.7264894			
14	12.2472418	5.6305604	3.5153648	1.6615585	0.7264843			
16	11.6634971	5.6298982	3.5152693	1.6615513	0.7264820			
18	11.4507240	5.6297769	3.5152366	1.6615370	0.7264795			
20	11.3318330	5.6298879	3.5152144	1.6615323	0.7264782			
			\varkappa_{21}					
8	45.0241081	9.7978035	5.9509250	3.7242509	1.9232343			
10	28.6524963	9.0961308	5.9419126	3.7240494	1.9230186			
12	25.1839423	8.9753827	5.9411071	3.7237082	1.9229498			
14	24.7716568	8.9680267	5.9410017	3.7236400	1.9229302			
16	21.5127262	8.9666567	5.9406514	3.7235913	1.9229128			
18	19.7385831	8.9665306	5.9406028	3.7235488	1.9228994			
20	17.7602337	8.9665240	5.9405887	3.7235415	1.9228951			
			\varkappa_{31}					
8	139.8797503	15.6705502	8.1460780	5.6340694	3.4040347			
10	83.8225384	12.9549222	8.0467491	5.6339955	3.4035682			
12	64.5885322	12.2296368	8.0449158	5.6335645	3.4034604			
14	53.4107617	12.0885542	8.0444586	5.6334979	3.4034106			
16	53.1387321	12.0796355	8.0442340	5.6333771	3.4033602			
18	38.8551864	12.0840012	8.0440279	5.6333432	3.4033355			
20	36.4674908	12.0848982	8.0439880	5.6333208	3.4033283			

Табл 2. То же, что и в табл. 1, но для ∧-образного конуса, где r_1 – радиус свободной поверхности

образование в форме Луковского [9, 12, 13], свя- для ∨-образного конуса и r₁ для ∧-образного козывающие декартовы переменные x, y, z с новыми – нуса). Представим $\varphi(x_1, x_2, x_3)$ в виде переменными x_1, x_2, x_3 следующим образом:

$$x = x_1, \quad y = x_1 x_2 \cos x_3, \quad z = x_1 x_2 \sin x_3.$$
 (25)

В новой системе координат $Ox_1x_2x_3$ с началом в точке O переменная $x_3 = \eta$ – это полярный угол в плоскости Оуг.

Область Q_0 , занятая жидкостью, принимает в системе (x_1, x_2, x_3) форму прямого кругового цилиндра $(x_0 \le x_1 \le x_{10}, 0 \le x_2 \le x_{20}, 0 \le x_3 \le 2\pi)$, а область G^{*} в плоскости меридионального сечения Ох₁х₂ (рис. 4) представляет собой прямоугольник со сторонами $h = x_{10} - x_0$ и $x_{20} = \text{tg } \theta_0$ (здесь радиус невозмущенной свободной поверхности равен 1

$$\varphi(x_1, x_2, x_3) = \psi_m(x_1, x_2) \frac{\sin mx_3}{\cos mx_3}, \quad (26)$$
$$m = 0, 1, 2, \dots$$

и перейдем, следуя работам [9,12], от трехмерной задачи (7) к т-параметрическому семейству спектральных задач относительно $\psi_m(x_1, x_2)$ в области G^* :

$$p\frac{\partial^{2}\psi_{m}}{\partial x_{1}^{2}} + 2q\frac{\partial^{2}\psi_{m}}{\partial x_{1}\partial x_{2}} + s\frac{\partial^{2}\psi_{m}}{\partial x_{2}^{2}} + d\frac{\partial\psi_{m}}{\partial x_{2}} - m^{2}c\psi_{m} = 0 \quad \mathbf{B} \quad G^{*},$$

$$(27)$$

$$s\frac{\partial\psi_m}{\partial x_2} + q\frac{\partial\psi_m}{\partial x_1} = 0$$
 на $L_1^*,$ (28)

$$p\frac{\partial\psi_m}{\partial x_1} + q\frac{\partial\psi_m}{\partial x_2} = \varkappa_m p\psi_m$$
 на L_0^* , (29)

$$p\frac{\partial\psi_m}{\partial x_1} + q\frac{\partial\psi_m}{\partial x_2} = 0 \quad \text{Ha} \quad L_2^*, \tag{30}$$

$$|\psi_m(x_1,0)| < \infty, \qquad m = 0, 1, 2, \dots,$$
 (31)

$$\int_{0}^{\infty} \psi_0 x_2 dx_2 = 0, \qquad (32)$$

где $G^* = \{(x_1, x_2) : x_0 \le x_1 \le x_{10}, 0 \le x_2 \le x_{20}\};$ $p = x_1^2 x_2; q = -x_1 x_2^2; s = x_2 (x_2^2 + 1); d = 1 + 2x_2^2;$ $c = 1/x_2; \mathcal{L}_0^*, \mathcal{L}_1^*, \mathcal{L}_2^*$ – части границы области G^* .

Можно показать, что решения спектральной задачи (27)–(32) совпадают с экстремальными точками функционала

$$\mathcal{J}(\psi_m) = \frac{1}{\int\limits_{L_0^*} p\psi_m^2 dx_2} \int\limits_{G^*} \left[p\left(\frac{\partial\psi_m}{\partial x_1}\right)^2 + 2q\frac{\partial\psi_m}{\partial x_1}\frac{\partial\psi_m}{\partial x_2} + s\left(\frac{\partial\psi_m}{\partial x_2}\right)^2 + \frac{m^2}{x_2}\psi_m^2 \right] dx_1 dx_2$$
(33)

на пробных функциях, удовлетворяющих условию (31).

Для рассматриваемого здесь типа конических областей существуют два типа частных решений уравнения (27), представленных в пространстве параметров x_1 , x_2 в разделенном виде:

$$x_1^{\nu} T_{\nu}^{(m)}(x_2), \qquad \frac{\bar{T}_{\nu}^{(m)}(x_2)}{x_1^{1+\nu}}, \qquad \nu \ge 0.$$
 (34)

Первый из них, регулярный в вершине конуса, возникает в случае конических областей, включающих свою вершину. Как показано в работе [15], функция $T_{\nu}^{(m)}$ определяется как решение краевой задачи с параметром ν в уравнении и в граничном условии

$$x_{2}^{2}(1+x_{2}^{2})T_{\nu}^{\prime\prime(m)} + x_{2}(1+2x_{2}^{2}-2\nu x_{2}^{2})T_{\nu}^{\prime(m)} + [\nu(\nu-1)x_{2}^{2}-m^{2}]T_{\nu}^{(m)} = 0, \qquad (35)$$

$$T_{\nu}^{\prime(m)}(x_{20}) = \nu \frac{x_{20}}{1-2} T_{\nu}^{(m)}(x_{20})$$
 (3)

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

Рис. 4. Исходная и трансформированная области меридионального сечения

при выполнении условия ограниченности решения $|T_{\nu}^{(m)}(0)| < \infty$. Эта задача имеет нетривиальное решение лишь для счетного числа $\nu = \nu_{mn} > 0$ $(m=0,1,2,\ldots,n=1,2,\ldots).$

Второе, сингулярное при $x_1 \to 0$, семейство частных решений, связанное с $\bar{T}_{\nu}^{(m)}$, возникает лишь в случае $x_0 \neq 0$, т. е. для усеченного конуса. Оно приводит к следующей краевой задаче с параметром ν :

$$x_{2}^{2}(1+x_{2}^{2})\bar{T}^{\prime\prime(m)} + x_{2}(1+4x_{2}^{2}+2\nu x_{2}^{2})\bar{T}^{\prime(m)} + [(\nu+1)(\nu+2)x_{2}^{2}-m^{2}]\bar{T}^{(m)} = 0,$$
(37)

$$\bar{T}^{\prime(m)}(x_{20}) + (\nu+1)\frac{x_{20}}{1+x_{20}^2}\bar{T}^{(m)}(x_{20}) = 0,$$
 (38)

также имеющей нетривиальные решения лишь для счетного числа неотрицательных ν .

Как следует из работ [13, 15], решения уравнений (35) и (37) тесно связаны с функциями Лежандра первого рода, а набор $\nu = \nu_{mn}$ (m = 0, 1, ...,n = 1, 2, ...) является общим для обоих семейств решений (34). Действительно, проведя сначала в обоих уравнениях замену переменных

$$\mu = (1 + x_2^2)^{-1/2}, \tag{39}$$

а затем использовав подстановки $y(\mu) = \mu^{\nu} T(\mu)$ и $y(\mu) = \mu^{-1-\nu} \bar{T}(\mu)$, вместо соотношений (35) и (37) получим известное дифференциальное уравнение:

$$(1 - \mu^2)y''(\mu) - 2\mu y'(\mu) + + \left[\nu(\nu+1) - \frac{m^2}{1 - \mu^2}\right]y(\mu) = 0,$$
(40)

(36) решениями которого действительно являются присоединенные функции Лежандра первого рода $y(\mu) = P_{\nu}^{(m)}(\mu).$

51

$ heta_0 = \pi/6$							
n	ν_{0n}	ν_{1n}	ν_{2n}	ν_{3n}			
1	6.83539808	3.11959709	5.49282500	7.75244235			
2	12.90828411	9.71206871	12.37204261	14.91804177			
3	18.93644560	15.82152796	18.58301633	21.24614849			
4	24.95138112	21.87016680	24.68578005	27.41663567			
5	30.96063428	27.89785663	30.74738346	33.52289135			
6	36.96692917	33.91577437	36.78860888	39.59590680			
7	42.97148871	39.92832912	42.81818932	45.64932001			
8	48.97494349	45.93761963	48.84047013	51.69015118			
9	54.97765160	51.94477437	54.85786626	57.72240544			
10	60.97983147	57.95045476	60.87183012	63.74854246			
11	66.98162391	63.95507442	66.88328881	69.77015940			
12	72.98312378	69.95890533	72.89286242	75.78833988			
		$\theta_0 = \pi$	/4				
1	4.40532918	2.00000000	3.63323872	5.20142706			
2	8.44711262	6.33388964	8.13729380	9.87466847			
3	12.46332875	10.39698483	12.25919783	14.06452673			
4	16.47193967	14.42505010	16.31855929	18.16308293			
5	20.47727740	18.44103192	20.35413803	22.22447977			
6	24.48090964	22.45137475	24.37794511	26.26665923			
7	28.48354098	26.45862229	28.39502631	30.29751029			
8	32.48553497	30.46398566	32.40789182	34.32109176			
9	36.48709810	34.46811614	36.41793652	38.33971851			
10	40.48835640	38.47139553	40.42599923	42.35481185			
11	44.48939109	42.47406256	44.43261536	46.36729454			
12	48.49025692	46.47627426	48.43814300	50.37779256			
		$\theta_0 = \pi$	/3				
1	3.19569115	1.46798738	2.75258821	4.00000000			
2	6.21952915	4.65418866	6.04042231	7.38840139			
3	9.22884937	7.69054134	9.11091186	10.49837828			
4	12.23380906	10.70673365	12.14521751	13.55538637			
5	15.23688626	13.71595755	15.16577182	16.59087636			
6	18.23898124	16.72192772	18.17952282	19.61524899			
7	21.24049935	19.72611149	21.18938780	22.63307179			
8	24.24164994	22.72920771	24.19681751	25.64669297			
9	27.24255203	25.73159226	27.20261792	28.65745115			
10	30.24327826	28.73348550	30.20727365	31.66616793			
11	33.24387547	31.73502524	33.21109395	34.67337662			
12	36.24437524	34.73630210	36.21428568	37.67943893			

Табл 3. Значения ν_{mk} для нескольких значений углов полураствора θ_0

Далее, проведя аналогичные операции в однородных краевых условиях (36) и (38), а также введя замену $\mu = \cos \theta$, приходим в обоих случаях к уравнению

$$\frac{\partial P_{\nu}^{(m)}(\cos\theta)}{\partial\theta}\Big|_{\theta=\theta_0} = 0, \qquad (41)$$

являющемуся общим трансцендентным уравнени-

ем для определения ν_{mn} $(m \ge 0, n \ge 1)$.

В табл. З приведены первые 12 значений ν_{mn} (m = 0, 1, 2, 3) для нескольких углов θ_0 , численно совпадающих с известными в литературе [3, 5, 6, 10].

Подытоживая сказанное, получаем с точностью до постоянного множителя нетривиальные решения задачи (27) – (32):

$$T_{\nu_{mk}}^{(m)}(x_2) = (1+x_2^2)^{\frac{\nu_{mk}}{2}} P_{\nu_{mk}}^{(m)} \left(\frac{1}{\sqrt{1+x_2^2}}\right) \quad (42)$$

И

$$\bar{T}_{\nu_{mk}}^{(m)}(x_2) = (1+x_2^2)^{\frac{-1-\nu_{mk}}{2}} P_{\nu_{mk}}^{(m)} \left(\frac{1}{\sqrt{1+x_2^2}}\right), \quad (43)$$

которые будут использованы ниже.

Отметим здесь также, что в работах [12, 14] приведены частные решения типа (34) при целых значениях индекса ν . Там же даны примеры их использования для построения приближенных решений спектральной задачи (27) – (30) в случае неусеченного конуса.

2.5. Вариационный метод решения спектральной задачи (27)-(30)

Сформулируем вариационный алгоритм Ритца-Трефтца решения спектральной задачи (27)-(30), исходя из вариационной формулировки задачи для квадратичного функционала (33). С этой целью частные решения (34) представим в нормированном виде

$$W_k^{(m)}(x_1, x_2) = N_k^{(m)} x_1^{\nu_{mk}} T_{\nu_{mk}}^{(m)}(x_2),$$

$$\bar{W}_k^{(m)}(x_1, x_2) = \bar{N}_k^{(m)} x_1^{-1 - \nu_{mk}} \bar{T}_{\nu_{mk}}^{(m)}(x_2),$$
(44)

где $N_k^{(m)}$
и $\bar{N}_k^{(m)}$ – множители, которые в дальнейшем выбираются из условия

$$1 = \|W_{k}^{(m)}\|_{L_{2}^{*}+L_{0}^{*}}^{2} = \|\bar{W}_{k}^{(m)}\|_{L_{2}^{*}+L_{0}^{*}}^{2} =$$

$$= \int_{0}^{x_{20}} x_{2}[(W_{k}^{(m)}|_{x_{1}=x_{10}})^{2} + (W_{k}^{(m)}|_{x_{1}=x_{0}})^{2}]dx_{2} = (45)$$

$$\int_{0}^{x_{20}} \bar{f}(x_{1}, x_{1}, x_{$$

$$x_2[(\bar{W}_k^{(m)}|_{x_1=x_{10}})^2 + \\ + (\bar{W}_k^{(m)}|_{x_1=x_0})^2]dx_2.$$

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

Явные формулы для подсчета этих нормирующих множителей имеют вид

$$N_{k}^{(m)} = \frac{1}{\sqrt{x_{10}^{2\nu_{mk}} + x_{0}^{2\nu_{mk}}}} \times \frac{1}{\sqrt{\int_{0}^{x_{20}} (1 + x_{2}^{2})^{\nu_{mk}} \left(P_{\nu_{mk}}^{(m)}\right)^{2} dx_{2}}}, \frac{1}{\sqrt{x_{10}^{-2 - 2\nu_{mk}} + x_{0}^{-2 - 2\nu_{mk}}}} \times \frac{1}{\sqrt{\int_{0}^{x_{20}} (1 + x_{2}^{2})^{-1 - \nu_{mk}} \left(P_{\nu_{mk}}^{(m)}\right)^{2} dx_{2}}}.$$

$$(46)$$

Заметим, что при $m\!=\!0$ систему частных решений (45) необходимо к тому же переопределить по схеме

$$W_k^{(0)} = W_k^{(0)} - c_k^{(0)},$$

$$\bar{W}_k^{(0)} = \bar{W}_k^{(0)} - \bar{c}_k^{(0)},$$
(47)

где

$$c_k^{(0)} = \frac{2}{x_{20}^2} \int_{0}^{x_{20}} x_2 W_k^{(0)}(x_{10}, x_2) dx_2;$$

$$\bar{c}_k^{(0)} = \frac{2}{x_{20}^2} \int_{0}^{x_{20}} x_2 \bar{W}_k^{(0)}(x_{10}, x_2) dx_2,$$
(48)

чтобы условие сохранения объема (32) выполнялось автоматически.

Приближенное решение вариационной задачи будем искать в виде

$$\psi_m(x_1, x_2) = \sum_{k=1}^{q_1} a_k^{(m)} W_k^{(m)} + \sum_{l=1}^{q_2} \bar{a}_l^{(m)} \bar{W}_l^{(m)}, \quad (49)$$

а для определения неизвестных постоянных $a_k^{(m)}$ и $\bar{a}_l^{(m)}$ воспользуемся необходимым условием экстремума функционала (33):

$$\frac{\partial \mathcal{J}_m}{\partial a_k^{(m)}} = 0, \qquad k = 1, 2, \dots, q_1,$$

$$\frac{\partial \mathcal{J}_m}{\partial \bar{a}_l^{(m)}} = 0, \qquad l = 1, 2, \dots, q_2,$$
(50)

приводящим к системе линейных однородных уравнений. Для определения частотных параме-

тров \varkappa_m , как и выше, получаем матричное уравнение

$$\det\left(\{\tilde{\alpha}_{ij}^{(m)}\} - \varkappa_m\{\tilde{\beta}_{ij}^{(m)}\}\right) = 0,$$

(51)
 $i, j = 1, 2, \dots, q_1 + q_2.$

Поскольку разложение (49) содержит два типа функций $W_k^{(m)}$ и $\bar{W}_k^{(m)}$, имеем четыре типа составляющих матриц $\{\tilde{\alpha}_{ij}^{(m)}\}$ и $\{\tilde{\beta}_{ij}^{(m)}\}$:

$$\tilde{\alpha}_{ij}^{(m)} = \begin{pmatrix} \alpha_{ij1}^{(m)} & \alpha_{ij2}^{(m)} \\ \alpha_{ij3}^{(m)} & \alpha_{ij4}^{(m)} \end{pmatrix},$$

$$\tilde{\beta}_{ij}^{(m)} = \begin{pmatrix} \beta_{ij1}^{(m)} & \beta_{ij2}^{(m)} \\ \beta_{ij3}^{(m)} & \beta_{ij4}^{(m)} \end{pmatrix}.$$
(52)

Элементы матриц $\{\alpha_{ijs}^{(m)}\}$
и $\{\beta_{ijs}^{(m)}\}$ $s\!=\!1,\ldots,4$ имеют следующий вид:

$$\begin{aligned} \alpha_{ij1}^{(m)} &= \int_{0}^{x_{20}} \left(x_1^2 x_2 \frac{\partial W_i^{(m)}}{\partial x_1} - \right. \\ &\left. - x_1 x_2^2 \frac{\partial W_i^{(m)}}{\partial x_2} \right)_{x_1 = h_t} W_j^{(m)} dx_2 - \\ &\left. - \int_{0}^{x_{20}} \left(x_1^2 x_2 \frac{\partial W_i^{(m)}}{\partial x_1} - \right. \\ &\left. - x_1 x_2^2 \frac{\partial W_i^{(m)}}{\partial x_2} \right)_{x_1 = h_b} W_j^{(m)} dx_2, \end{aligned}$$

$$\begin{aligned} \alpha_{ij2}^{(m)} &= \int_{0}^{x_{20}} \left(x_1^2 x_2 \frac{\partial W_i^{(m)}}{\partial x_1} - \right. \\ &\left. - x_1 x_2^2 \frac{\partial W_i^{(m)}}{\partial x_2} \right)_{x_1 = h_i} \bar{W}_j^{(m)} dx_2 - \right. \\ &\left. - \int_{0}^{x_{20}} \left(x_1^2 x_2 \frac{\partial W_i^{(m)}}{\partial x_1} - \right. \\ &\left. - x_1 x_2^2 \frac{\partial W_i^{(m)}}{\partial x_2} \right)_{x_1 = h_b} \bar{W}_j^{(m)} dx_2, \end{aligned}$$

$$\begin{split} \alpha_{ij3}^{(m)} &= \int_{0}^{x_{20}} \left(x_{1}^{2} x_{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{1}} - \right. \\ &- x_{1} x_{2}^{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{2}} \right)_{x_{1}=h_{t}} W_{j}^{(m)} dx_{2} - \\ &- \int_{0}^{x_{20}} \left(x_{1}^{2} x_{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{2}} - \right)_{x_{1}=h_{b}} W_{j}^{(m)} dx_{2}, \\ &\alpha_{ij4}^{(m)} &= \int_{0}^{x_{20}} \left(x_{1}^{2} x_{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{2}} - \right)_{x_{1}=h_{t}} \bar{W}_{j}^{(m)} dx_{2} - \\ &- x_{1} x_{2}^{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{2}} \right)_{x_{1}=h_{t}} \bar{W}_{j}^{(m)} dx_{2} - \\ &- \int_{0}^{x_{20}} \left(x_{1}^{2} x_{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{1}} - \right. \\ &- x_{1} x_{2}^{2} \frac{\partial \bar{W}_{i}^{(m)}}{\partial x_{2}} \right)_{x_{1}=h_{t}} \bar{W}_{j}^{(m)} dx_{2}, \\ &\beta_{ij1}^{(m)} &= h_{t}^{2} \int_{0}^{x_{20}} x_{2} \left(W_{i}^{(m)} W_{j}^{(m)} \right)_{x_{1}=h_{t}} dx_{2}, \\ &\beta_{ij2}^{(m)} &= h_{t}^{2} \int_{0}^{x_{20}} x_{2} \left(W_{i}^{(m)} \bar{W}_{j}^{(m)} \right)_{x_{1}=h_{t}} dx_{2}, \\ &\beta_{ij3}^{(m)} &= h_{t}^{2} \int_{0}^{x_{20}} x_{2} \left(\bar{W}_{i}^{(m)} W_{j}^{(m)} \right)_{x_{1}=h_{t}} dx_{2}, \end{split}$$

$$\beta_{ij4}^{(m)} = h_t^2 \int_0^{-\infty} x_2 \left(\bar{W}_i^{(m)} \bar{W}_j^{(m)} \right)_{x_1 = h_t} dx_2.$$

Здесь в случае \wedge -образного конуса $h_t = r_1/\lg \theta_0$; $h_b = 1/\lg \theta_0$, а для \vee -образного $-h_t = 1/\lg \theta_0$; $h_b = r_1/\lg \theta_0$.

Матричная спектральная задача (51) имеет q_1+q_2 собственных значений, что соответствует количеству членов в разложении (49). Как обычно, для каждого фиксированного m собственные значения упорядочены в порядке возрастания.

2.6. Сходимость (базис с учетом сингулярности)

В табл. 4 показана типичная сходимость метода в случае \lor -образных конусов с углами полураствора $10^{\circ} \leq \theta_0 \leq 75^{\circ}$ и $0.2 \leq r_1 \leq 0.9$. Как видно из таблицы, четыре-пять значащих цифр

\varkappa_{01}								
q	$r_1 = 0.2$	$r_1 = 0.4$	$r_1 = 0.6$	$r_1 = 0.8$	$r_1 = 0.9$			
2	3.3856755	3.3856660	3.3820640	3.1484050	2.2248703			
3	3.3856061	3.3855964	3.3819195	3.1439229	2.2117442			
4	3.3856005	3.3855908	3.3818784	3.1419372	2.2061790			
5	3.3855998	3.3855900	3.3818587	3.1408877	2.2032825			
6	3.3855997	3.3855898	3.3818473	3.1402670	2.2015827			
7	3.3855996	3.3855898	3.3818401	3.1398700	2.2005005			
8	3.3855996	3.3855897	3.3818352	3.1396007	2.1997691			
9	3.3855996	3.3855897	3.3818317	3.1394099	2.1992516			
10	3.3855996	3.3855897	3.3818291	3.1392697	2.1988720			
11	3.3855996	3.3855897	3.3818272	3.1391637	2.1985854			
12	3.3855996	3.3855897	3.3818257	3.1390816	2.1983636			
			\varkappa_{11}					
2	1.3043783	1.3017069	1.2543375	0.9359568	0.5448609			
3	1.3043770	1.3016953	1.2541481	0.9348642	0.5434825			
4	1.3043769	1.3016912	1.2540733	0.9344368	0.5429762			
5	1.3043769	1.3016891	1.2540364	0.9342257	0.5427290			
6	1.3043768	1.3016880	1.2540156	0.9341063	0.5425891			
7	1.3043768	1.3016873	1.2540026	0.9340322	0.5425024			
8	1.3043768	1.3016868	1.2539941	0.9339831	0.5424449			
9	1.3043768	1.3016865	1.2539881	0.9339490	0.5424048			
10	1.3043768	1.3016862	1.2539838	0.9339242	0.5423758			
11	1.3043768	1.3016861	1.2539806	0.9339057	0.5423540			
12	1.3043768	1.3016859	1.2539781	0.9338916	0.5423374			
			\varkappa_{21}					
2	2.2631617	2.2630995	2.2551472	2.0193228	1.3712121			
3	2.2631505	2.2630877	2.2550604	2.0172489	1.3662947			
4	2.2631498	2.2630867	2.2550255	2.0163348	1.3642339			
5	2.2631497	2.2630865	2.2550072	2.0158503	1.3631513			
6	2.2631497	2.2630864	2.2549964	2.0155626	1.3625100			
7	2.2631497	2.2630863	2.2549894	2.0153778	1.3620985			
8	2.2631497	2.2630863	2.2549847	2.0152522	1.3018188			
9 10	2.2631497	2.2630863	2.2549814	2.0151628	1.3616199			
10	2.2031497	2.2030862	2.2549789	2.0150970	1.3014734 1.9619694			
11 10	2.2031497	2.2030802	2.2049770	2.01504/1	1.3013024			
12	2.2031497	2.2030802	2.2049700	2.0100084	1.3012702			
2	3 1802802	3 1809780	\varkappa_{31} 3 1701/66	3 0511444	2 3/60685			
∠ ૨	3.1802603	3.1802709	3.1791400 3.1701006	3.0011444	2.3403000 9 3383980			
э 1	3 1802014	3 1802300	3 1700808	3.0492400	2.0000209 9.33/33/9			
4 5	3 1802492	3 1802470	3 1700847	3.0403374	2.0040042 9 3391165			
6	3 1802409	3 1802473	3 1700817	3 0475138	2.3321103			
7	3 1802400	3 1802474	3 1700707	3 0473058	2.3307528			
8	3 1802400	3 1802474	3 1700782	3 0471611	2.5230555			
a	3 1802400	3 1802474	3 1700772	3 0470563	2.3232202			
10	3 1802488	3 1802474	3 1790766	3 0469780	2.3284382			
11	3 1802488	3 1802474	3 1790760	3 0469179	2.3281701			
12^{11}	3.1802488	3.1802474	3.1790756	3.0468708	2.3279760			
	5.100 100	J. 1 J J J J J J J J J J J J J J J J J J	5.1.50100	5.0 100 00	2.32.0100			

Табл 4. Сходимость к \varkappa_{m1} от $q\!=\!q_1\!=\!q_2$ для V-образного конуса при $\theta_0\!=\!30^\circ$

\varkappa_{01}								
q	$r_1 = 0.2$	$r_1 = 0.4$	$r_1 = 0.6$	$r_1 = 0.8$	$r_1 = 0.9$			
2	$2\overline{0.8298475}$	$1\overline{0.4148891}$	$\overline{6.9344695}$	4.7810697	2.8688944			
3	20.2923988	10.1461621	6.7546816	4.6296533	2.7489543			
4	20.1518381	10.0758806	6.7075834	4.5888632	2.7159111			
5	20.0971105	10.0485165	6.6892481	4.5727876	2.7025141			
6	20.0706999	10.0353110	6.6803962	4.5649163	2.6958165			
7	20.0560999	10.0280108	6.6755013	4.5605151	2.6920057			
8	20.0472358	10.0235787	6.6725289	4.5578190	2.6896370			
9	20.0414727	10.0206971	6.6705959	4.5560533	2.6880664			
10	20.0375250	10.0187232	6.6692717	4.5548366	2.6869728			
11	20.0347076	10.0173145	6.6683265	4.5539639	2.6861812			
12	20.0326293	10.0162753	6.6676292	4.5533174	2.6855901			
			\varkappa_{11}					
2	11.3353318	5.6470881	3.5286769	1.6728665	0.7324096			
3	11.3157652	5.6372210	3.5212650	1.6668699	0.7292459			
4	11.3087944	5.6337032	3.5185902	1.6646112	0.7280929			
5	11.3055769	5.6320784	3.5173427	1.6635271	0.7275363			
6	11.3038422	5.6312020	3.5166652	1.6629260	0.7272244			
7	11.3028047	5.6306777	3.5162579	1.6625588	0.7270323			
8	11.3021366	5.6303399	3.5159945	1.6623185	0.7269056			
9	11.3016819	5.6301100	3.5158147	1.6621527	0.7268178			
10	11.3013587	5.6299466	3.5156865	1.6620336	0.7267543			
11	11.3011210	5.6298264	3.5155920	1.6619452	0.7267071			
12	11.3009412	5.6297354	3.5155204	1.6618778	0.7266709			
			\varkappa_{21}					
2	18.0391831	9.0191771	5.9776164	3.7618639	1.9527587			
3	17.9821537	8.9906572	5.9581862	3.7426300	1.9381817			
4	17.9601353	8.9796459	5.9506735	3.7348756	1.9322151			
5	17.9495064	8.9743303	5.9470400	3.7310115	1.9291671			
6	17.9436141	8.9713835	5.9450230	3.7288180	1.9274002			
7	17.9400245	8.9695883	5.9437929	3.7274571	1.9262853			
8	17.9376827	8.9684172	5.9429898	3.7265564	1.9255371			
9	17.9360736	8.9676124	5.9424376	3.7259301	1.9250109			
10	17.9349218	8.9670364	5.9420421	3.7254774	1.9246267			
11	17.9340700	8.9666104	5.9417495	3.7251398	1.9243378			
12	17.9334227	8.9662867	5.9415271	3.7248815	1.9241151			
			\varkappa_{31}					
2	24.3612389	12.1806106	8.1156513	5.7004534	3.4738763			
3	24.2542953	12.1271385	8.0798959	5.6679350	3.4415869			
4	24.2103022	12.1051419	8.0651860	5.6542913	3.4273519			
5	24.1882362	12.0941088	8.0578058	5.6473083	3.4198027			
6	24.1756938	12.0878376	8.0536099	5.6432774	3.4153189			
7	24.1679197	12.0839506	8.0510088	5.6407484	3.4124396			
8	24.1627844	12.0813829	8.0492904	5.6390614	3.4104814			
9	24.1592226	12.0796020	8.0480984	5.6378819	3.4090897			
10	24.1566550	12.0783182	8.0472390	5.6370259	3.4080656			
11	24.1547453	12.0773633	8.0465998	5.6363855	3.4072902			
12	24.1532877	12.0766345	8.0461119	5.6358944	3.4066892			

Табл 5. Сходимость к \varkappa_{m1} от $q\!=\!q_1\!=\!q_2$ для
 ^-образного конуса при $\theta_0\!=\!30^\circ$

 \varkappa_{m1} для $0.2 \leq r_1 \leq 0.55$ стабилизируются уже при $q = q_1 + q_2 = 7 \div 10$ (14 ÷ 20 базисных функций), что в целом соответствует результатам § 2.3. Метод устойчиво сходится при $r_1 < 0.2$, в том числе к \varkappa_{01} , чего не наблюдалось при использовании частных решений полиномиального типа. При этом количество стабилизируемых значащих цифр при $\theta_0 < 30^\circ$ и $0 < r_1 \le 0.4$ соответствует приведенным в работе [13] для неусеченных конусов. Оно больше при том же количестве базисных функций, если $15^{\circ} \leq \theta_0 < 30^{\circ}$, но меньше, если $15^{\circ} \leq \theta_0$. Гаврилюк и др. [13] связывали замедление сходимости для малых углов полураствора с несоответствием асимптотического поведения базиса вдоль вертикальной оси точному решению задачи, которое для цилиндрической полости (предельное положение) должно экспоненциально затухать. Далее, с уменьшением глубины заполнения бака $(0.55 \le r_1 \le 0.9)$ в \lor -баках с $5^\circ \le \theta_0 \le 85^\circ$, удержание 18÷24 базисных функций гарантирует лишь три-четыре значащие цифры. Аналогично, переход к "мелкой воде" за счет увеличения θ_0 также приводит к замедлению сходимости. Впрочем, и в этом случае гарантируются три-четыре значащих цифры при q = 24.

В табл. 5 продемонстрирована сходимость метода для ∧-образных конусов при тех же значениях r_1 и $\theta_0 = 30^\circ$, что и в табл. 4. Из нее видно, что метод в целом применим и в этом случае, однако, как и метод §. 2.1, он менее эффективен, чем для V-образных конусов – здесь то же количество базисных функций дает лишь дветри значащие цифры для $0.2 \le r_1 \le 0.9$. В то же время, использование данного набора функций не приводит к численной неустойчивости счета при определении осесимметричных форм \varkappa_{01} даже для $0.05 \le r_1 \le 0.4$. Минимальное собственное значение \varkappa_{11} для этих r_1 также определяется с большей точностью. При тех же r_1 увеличение угла полураствора для \wedge -образных конусов ($\theta_0 > 75^\circ$) значительно замедляет сходимость и количество значащих цифр при $q_1 = q_2 = 12$ критически падает, особенно в пределе $r_1 \to 1$. Однако и в этом случае при $r_1 \approx 0.9$ (что должно означать переход к "мелкой воде") удается гарантировать две значащие цифры при $q_1 = q_2 = 12 \div 14$.

Таким образом можем отметить, что предлагаемая методика имеет преимущества для ∨образных конусов, близких к неусеченным.

Наличие двух типов базисных функций позволяет независимо варьировать q_1 и q_2 в формуле (49) с целью получения минимального \varkappa_{m1} при фиксированном количестве базисных функций $Q = q_1 + q_2$. Численные эксперименты для фик-

сированных $Q \ge 16$ показали, что более точные значения \varkappa_{m1} достигаются при $q_2 > q_1$. Особенно наглядно это проявляется для малых глубин заполнения. Так, для $\theta_0 = 30^\circ$ и $r_1 = 0.9$ у \lor -образного конуса приближенное значение $\varkappa_{11} = 0.54233738$ может быть получено при размерностях $q_1 = q_2 =$ 12, Q = 24 или $q_1 = 7, q_2 = 12, Q = 19.$

3. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТОЧНО-СТИ ОБОИХ ВАРИАЦИОННЫХ МЕТОДОВ

Величины собственных значений \varkappa_{mn} зависят от геометрических параметров бака – глубины заполнения жидкостью h; угла полураствора полости θ_0 ; типа конусности (\wedge - или \vee -образный).

Установлено, что с увеличением величины угла полураствора собственные значения для \lor образного конуса уменьшаются (рис. 5) при фиксированной глубине заполнения жидкости, в то время как для \land -образного конуса (рис. 6) при увеличении θ_0 они увеличиваются. Величины собственных частот σ_{m1} (m = 0, 1, 2, 3) соотносятся как

 $\sigma_{01} > \sigma_{31} > \sigma_{21} > \sigma_{11}$

для ∨-образного конуса и

$$\sigma_{31} > \sigma_{01} > \sigma_{21} > \sigma_{11}$$

для ∧-образного конуса.

Расчеты по определению собственных значений \varkappa_{mn} , проиллюстрированные на рис. 5 и 6, показывают, что при $r_1 \rightarrow 1$ ($r_0 = 1$) собственные значения стремятся к нулю как для \lor - так и для \land -образных конусов.

Значения низших собственных частотных параметров \varkappa_{11} для \lor -образных конусов актуальны для расчета водонапорных башен. Они приведены в табл. 6. Реальную размерную величину собственной частоты σ_{mn} можно получить, воспользовавпись формулой

$$\sigma_{mn}^2 = \frac{g \varkappa_{mn}(\theta_0, r_1/r_0)}{r_0}$$
(53)

и данными из табл. 6, где g, r_0 и r_1 – размерные величины.

Сравнение результатов, полученных при использовании двух изучаемых базисных систем, показывает, что применение для определения частотных параметров базиса из § 2.4 (основанного на функциях Лежандра) замедляет сходимость для \varkappa_{mn} при малых глубинах заполнения полости $(0.6 \leq r_1)$ для произвольных углов полураствора. В этом случае использование частных решений

$r_1 ackslash heta_0$	10°	15°	20°	25°	30°	35°	40°	45°
0.05	1.6743	1.5862	1.4950	1.4011	1.3044	1.2052	1.1037	1.0000
0.10	1.6743	1.5862	1.4950	1.4011	1.3044	1.2052	1.1037	1.0000
0.15	1.6743	1.5862	1.4950	1.4011	1.3044	1.2052	1.1037	1.0000
0.20	1.6743	1.5862	1.4950	1.4011	1.3044	1.2051	1.1035	0.9996
0.25	1.6743	1.5862	1.4950	1.4010	1.3043	1.2049	1.1030	0.9986
0.30	1.6743	1.5862	1.4950	1.4010	1.3041	1.2043	1.1017	0.9966
0.35	1.6743	1.5862	1.4950	1.4008	1.3034	1.2027	1.0990	0.9927
0.40	1.6743	1.5862	1.4949	1.4002	1.3017	1.1994	1.0938	0.9857
0.45	1.6743	1.5862	1.4945	1.3987	1.2980	1.1930	1.0846	0.9743
0.50	1.6743	1.5860	1.4935	1.3952	1.2908	1.1816	1.0696	0.9566
0.55	1.6743	1.5856	1.4908	1.3877	1.2774	1.1625	1.0461	0.9304
0.60	1.6743	1.5842	1.4842	1.3730	1.2540	1.1320	1.0110	0.8932
0.65	1.6740	1.5799	1.4697	1.3456	1.2153	1.0856	0.9607	0.8423
0.70	1.6727	1.5683	1.4395	1.2973	1.1544	1.0181	0.8915	0.7751
0.75	1.6674	1.5391	1.3808	1.2172	1.0632	0.9242	0.8002	0.6897
0.80	1.6472	1.4709	1.2741	1.0918	0.9339	0.7994	0.6844	0.5850
0.85	1.5781	1.3251	1.0945	0.9084	0.7606	0.6416	0.5438	0.4614
0.90	1.3702	1.0471	0.8199	0.6599	0.5423	0.4521	0.3800	0.3207
0.95	0.8631	0.5955	0.4461	0.3511	0.2849	0.2356	0.1970	0.1657

Табл 6. Значения \varkappa_{11} в зависимости от θ_0 и r_1 для $\vee\text{-образного конуса}$

$r_1 ackslash heta_0$	50°	55°	60°	65°	70°	75°	80°
0.05	0.8943	0.7868	0.6777	0.5671	0.4553	0.3424	0.2287
0.10	0.8943	0.7868	0.6776	0.5670	0.4551	0.3423	0.2286
0.15	0.8941	0.7865	0.6772	0.5665	0.4547	0.3419	0.2283
0.20	0.8935	0.7857	0.6763	0.5655	0.4536	0.3410	0.2276
0.25	0.8922	0.7840	0.6742	0.5634	0.4517	0.3393	0.2264
0.30	0.8894	0.7806	0.6706	0.5598	0.4484	0.3366	0.2245
0.35	0.8845	0.7750	0.6647	0.5541	0.4433	0.3325	0.2216
0.40	0.8762	0.7660	0.6556	0.5456	0.4359	0.3266	0.2174
0.45	0.8633	0.7525	0.6425	0.5335	0.4256	0.3184	0.2117
0.50	0.8442	0.7332	0.6242	0.5171	0.4117	0.3076	0.2042
0.55	0.8171	0.7067	0.5996	0.4954	0.3936	0.2935	0.1946
0.60	0.7800	0.6715	0.5676	0.4676	0.3707	0.2759	0.1826
0.65	0.7309	0.6261	0.5271	0.4330	0.3425	0.2544	0.1681
0.70	0.6681	0.5693	0.4775	0.3910	0.3086	0.2289	0.1509
0.75	0.5905	0.5007	0.4183	0.3417	0.2691	0.1992	0.1311
0.80	0.4978	0.4202	0.3499	0.2851	0.2241	0.1657	0.1089
0.85	0.3906	0.3284	0.2727	0.2218	0.1741	0.1286	0.0844
0.90	0.2704	0.2267	0.1879	0.1526	0.1197	0.0884	0.0580
0.95	0.1394	0.1167	0.0966	0.0784	0.0615	0.0454	0.0297

Рис. 5. Значения $\varkappa_{m1}(r_1)$ для \wedge -образных конусов

Рис. 6. То же, что и на рис. 5, но для ∨-образных конусов

И. А. Луковский, А. В. Солодун, А. Н. Тимоха

полиномиального типа выглядит более предпочтительным. Для больших глубин ($r_1 \leq 0.4$) частные решения полиномиального типа малоприменимы и в ряде случаев, особенно для \wedge -образной полости, приводят к неустойчивому счету. Здесь выгоднее использовать второй функциональный базис, который гарантирует устойчивый счет и большую точность. Для \vee -образной конической полости в диапазоне $0.2 \leq r_1 \leq 0.55$ точности обоих методов сравнимы.

Сопоставление численных результатов показывает, что оба метода достаточно хорошо определяют практически важное собственное значение \varkappa_{11} , определяющее минимальную собственную частоту.

Общее представление о точности методов для \varkappa_{11} в \lor -образных конусах может быть получено из рис. 7. Здесь показаны диапазоны (r_1, θ_0) , в которых стабилизируется одинаковое количество зна-

чащих цифр при использовании одинакового числа базисных функций. Тестировались двадцать базисных функций. Видно, что точность метода § 2.1 невысока лишь для малых θ_0 и r_1 , т. е. при большой глубине жидкости в конусе, близком к цилиндрическому. В остальных случаях гарантируется высокая практическая точность. В то же время, малые θ_0 и r_1 не ухудшают сходимости метода § 2.4, однако он имеет невысокую точность при $r_1 \rightarrow 1$ в диапазоне $\theta_0 > 45^\circ$, т. е. для малых глубин в усеченных конусах с большими углами полураствора.

выводы

Рассмотрены два численно-аналитических метода расчета собственных частот и форм в усеченных конических баках, основанные на вариационном алгоритме Ритца – Трефтца. Первый из них использует в качестве базиса систему частных решений полиномиального типа. Второй метод использует неконформное преобразование области, приводящее к частичному разделению переменных задачи. Это позволяет построить эффективную координатную систему функций, восходящую к функциям Лежандра.

Анализ полученных численных результатов показывает, что каждый из этих подходов имеет свои границы эффективной применимости в зависимости от геометрии конической полости. Первый метод более эффективен при малых относительных глубинах заполнения жидкостью, а второй – при больших глубинах и малых углах раствора конической полости.

Типичной для всего набора конфигураций рассматриваемых конических полостей является более медленная сходимость вариационных методов для \land -образных конусов по сравнению с \lor образными. Это объясняется наличием сингулярностей в производных собственных мод колебаний вдоль контактной линии свободной поверхности.

Численные данные, полученные в этой статье, сопоставлены с данными для конических полостей с малым углом раствора [5,6]. Удовлетворительное согласование наблюдается лишь для малых углов конусности ($\theta_0 < 15^\circ$).

Изложенные результаты предполагается использовать для развития нелинейной модальной теории для случая усеченных конических баков. Луковский [12] указал пути ее обобщения для произвольных сосудов вращения, что было реализовано в работе Гаврилюка и др. [13] для неусеченного \lor -образного конуса.

БЛАГОДАРНОСТИ

Авторы благодарят Немецкое исследовательское общество за финансовую поддержку (проект DFG 436UKR 113/33/00).

Участие в работе А. Н. Тимохи стало возможным благодаря спонсорству Центра кораблей и океанских структур при Норвежском университете науки и технологии (г. Трондхейм, Норвегия) и фонда Гумбольдта (Германия).

Работа выполнена при частичной поддержке НИР N 0105U001108.

- 1. Levin O. Oscillation of a fluid in rectlinear conical container // AIAA J.– 2, N 6.– 1963.– C. 1447–1448.
- Докучаев Л. В., Луковский И. А. Методы определения гидродинамических характеристик подвижного сосуда с перегородками // Изв. АН СССР. МЖГ.– 1968.– N 6.– С. 205–213.
- Фещенко С. Ф., Луковский И. А., Рабинович Б. И., Докучаев Л. В. Методы определения присоединенных масс жидкости в подвижных полостях.– К.: Наук. думка, 1969.– 250 с.
- Микишев Г. Н., Рабинович Б. И. Динамика твердого тела с полостями, частично заполненного жидкостью. – М.: Машиностроение, 1968. – 532 с.
- Докучаев Л. В. К решению краевой задачи о колебаниях жидкости в конических полостях // Прикл. мат. мех.– 1964.– 28, N 1.– С. 151–154.
- Bauer H. F. Sloshing in conical tanks // Acta Mechanica.- 1982.- 43, N 3-4.- P. 185-200.
- Abramson H. N. NASA space vehicle design criteria (structures).– NASA SP-8009: Propellant Slosh Loads, 1968.– 48 p.
- Микишев Г. Н., Дорожкин Н. Я. Экспериментальные исследования свободных колебаний жидкости в контейнерах // Изв. АН СССР. Отд. техн. наук, мех. машиностр.– 1961.– N 4.– С. 48–53.
- 9. Луковский И. А. Нелинейные колебания жидкости в полостях сложной геометрии.– К.: Наук. думка, 1975.– 232 с.
- Луковский И. А., Билык А. Н. Вынужденные нелинейные колебания жидкости в подвижных осесимметричных конических полостях // Численноаналитические методы исследования динамики и устойчивости многомерных систем.– К.: Ин-т матем. АН УССР, 1985.– С. 12–26.
- Bauer H. F., Eidel W. Non-linear liquid motion in conical container // Acta Mechanica.- 1988.- 73, N 1-4.- P. 11-31.
- 12. Луковский И. А. Введение в нелинейную динамику тел с полостями, частично заполненными жидкостью.– К.: Наук. думка, 1990.– 296 с.
- Gavrilyuk I., Lukovsky I. A., Timokha A. N. Linear and nonlinear sloshing in a circular conical tank // Fluid Dyn. Resch.– 2005.– 37.– P. 399–429.
- Lukovsky I. A., Timokha A. N. Modal modeling of nonlinear fluid sloshing in tanks with non-vertical walls. Non-conformal mapping technique // Int. J. Fluid Mech. Resch.- 2002.- 29, N 2.- P. 216-242.

- Луковский І. А. До розв'язування спектральних задач лінійної теорії коливань рідини в конічних баках // Доп. НАН України. Сер. А.– 2002.– N 5.– Р. 53–58.
- Schiffner K. A modified boundary element method for the three-dimensional problem of fluid oscillation // Proc. Fifth Int. Conf. Boundary Elements.– Berlin: Springer-Verlag, 1983.– P. 323–335.
- European Committie for Standatization (CEN) Eurocode 8. Design provisions of earthquake resistance of structures.– Brussels: Silos, Tanks and Pipelines, Part 4, 1998.– 56 p.
- Dutta S., Mandal A., Dutta S.C. Soil-structure interaction in dynamic behaviour of elevated tanks with alternate frame staging configurations // J. Sound Vib.- 2004.- 277.- P. 825-853.
- Shrimali M.K., Jangid R.S. Earthquake response of isolated elevated liquid storage steel tanks // J. Constr. Steel Resch.- 2003.- 59.- P. 1267-1288.
- El Damatty A., Korol R. M., Tang L. M. Analytical and experimental investigation of the dynamic response of liquid-filled conical tanks // Proc. World Conf. Earthquake Engng, Pap. 966, Topic 7.– New Zeland.– 2000.– P. 8.
- Tang L. M. Dynamic behavior of liquid-filled circular and conical tanks (Master Thesis).– Hamilton, CA: McMaster University, 1999.– 180 p.
- Dutta S., Laha M. K. Analysis of the small amplitude sloshing of a liquid in a rigid container of arbitrary shape using a low-order boundary element method // Int. J. Numer. Methods Engng.- 2000.- 47, N 9.-P. 1633-1648.
- Morand J.-P., Ohayon R. Fluid structure interaction. Applied numerical methods.– New York: John Wiley & Sons, 1995.– 212 p.
- Луковский И. А., Тимоха А. Н. Вариационные методы в нелинейной динамике ограниченного объема жидкости. – К.: Ин-т матем. НАНУ, 1995.– 400 с.
- Faltinsen O. M., Rognebakke O. F., Lukovsky I. A., Timokha A. N. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth // J. Fluid Mech.- 2000.- 407.- P. 201-234.
- Faltinsen O. M., Rognebakke O. F., Timokha A. N. Resonant three-dimensional nonlinear sloshing in a square base basin // J. Fluid Mech.- 2003.- 487.-P. 1-42.
- Faltinsen O. M., Rognebakke O. F., Timokha A. N. Resonant three-dimensional nonlinear sloshing in a square base basin. Part 2. Effect of higher modes // J. Fluid Mech.- 2005.- 523.- P. 199-218.
- Lukovsky I. A. Variational methods of solving dynamic problems for fluid-containing bodies // Int. Appl. Mech.- 2004.- 40, N 10.- P. 1092-1128.
- Faltinsen O. M., Rognebakke O. F., Timokha A. N. Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth // J. Fluids Struct.- 2005.- 20.- P. 81–103.
- Луковский И. А., Барняк М. Я., Комаренко А. Н. Приближенные методы решения задач динамики ограниченного объема жидкости.– К.: Наук. думка, 1984.– 212 с.
- Ibrahim R. Liquid sloshing dynamics.- Cambridge: Cambridge Univ. Press, 2005.- 948 p.