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In this paper we discuss the problem of finding numerical solution of some nonlinear differential equations using wavelet
bases. It is also given a short outline of the method in dealing with the nonlinear heat equation.

Y crarTi 06roBOPIOETHCA MPOGIEMa YUCENBHOIMO POSB’ A3aHHA JeAKUX HENIHINHUX qudEepeHIIIHIX PIBHAHD 13 BUKOPUCTAH-
HAM BeUBIeT-6a3UCIB. Y HIM TakK0oX AAHO KOPOTKUH OMKC METOAY POSB’ A3aHHA HENIHINHOIO PIBHAHHSA TEIIONPOBIAHOCTI.

B crarbe o6cyxaaeTca npobieMa YUCIEHHOTO PEIIEHNsA HEKOTOPBIX HelINMHEMHBIX AuddepeHINalbHBIX ypaBHEHUH C HC-
[OILBOBaHNEM BeHBIeT-6asuCcoB. B Hell Takke AaHO KPATKOE ONUCAHNE METOAa PEIleHNa HEeIMHENHOrO ypaBHEHNA TEILIo-

IPOBOOHOCTHU.

INTRODUCTION

It has been recently shown that wavelet theo-
ry [1-5] is a powerful method for the numerical
modelling of linear and nonlinear differential equa-
tions [6—10]. However human experience tell us that
the physics of the real word cannot be interpreted
with linear equations. Mostly, there are nonlinear
equations, which give us a real modelling of nature.
On the other hand phenomena usually have a very
short range of existence and a very high intensity in
order to make influence on the environment. Thus,
a localized analysis [1—5] seems to be the most con-
venient approach to the study of phenomena. For
instance functions, like a delta Dirac or a more gen-
eral distribution or simply an impulse function have
been hardly accepted within a mathematical mod-
el because of the peculiarity in treating functions
vanishing nearly everywhere but in a discrete set of
points. In correspondence of the singularity, very of-
ten a wrong practice suggest us to remove the singu-
larity. However, some phenomena are interesting just
when the singularities “appears”, therefore remov-
ing the singularity means canceling the phenomenon.
Wavelets are very well localized functions, and, since
they are zero nearly everywhere, they can be easily
treated in numerical applications.

In this paper, the numerical approach to a differen-
tial equation is based on the representation of the un-
known function in a given basis of fundamental func-
tions, together with its derivatives. Like in the so-
called collocation methods, the value of the unknown
function will be a linear combination of known dis-

crete values with some coefficients to be determined.
We will choose the Haar family of wavelets as basis,
and the coefficients will be computed by the fast Haar
transform (see e.g. [5,11,12]). The problem of repre-
senting the derivatives of the unknown function will
be solved smoothing the Haar wavelets with suitable
order splines.

The problem of numerically solving nonlinear equa-
tions is given in section 1, then after some preliminary
definitions on the Haar and on the periodic wavelets
(section 2), the wavelets representations are defined
in section 3. The wavelet (discrete) representation is
discussed in section 4 and the fast Haar transform
is described in section 5. A smoothing process, suit-
able for the wavelets is given in section 6, and a final
example 1s sketched in section 7.

1. NUMERICAL SOLUTIONS OF NON-
LINEAR DIFFERENTIAL EQUATIONS:
Ly-APPROXIMATION

A class of methods for the numerical solution of
differential equations consists in the so-called col-
location (pointwise) methods. The solution is as-
sumed to be known in a discrete set of points (nodes),
and extended by a series containing the known val-
ues and a basis set of functions. This basis should
be carefully chosen in order to obtain the conver-
gence [6,8,9,13,14] of the numerical method and the
completeness of the functional space.
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Consider the nonlinear partial differential equation

du du 0*u
E_f<tal‘auaa_xawa"')a (1)

and assume without restrictions that u=w(xz,?) with
reQCRand feR. If the domain €2 is unbounded, a
simple transformation (see e. g. [14]) of the variable »
leads us to an equivalent equation on a bounded do-
main thus we consider Q=[a, b] where a < oo, b<co.
Moreover, if the function f, in the right hand side
of (1), depends on higher order derivatives of u with
respect to ¢, the equation (1) can be transformed in-
to a system of equations containing only first order
derivatives with respect to ¢, therefore we assume
that, with respect to ¢, f depends only on Odu/0t.
Together with (1) it comes a set of conditions (initial
and/or boundary)

we Do = wle) Vo€t
{ L(u(xat)”x:a = Ua(t) (2)
YVt € R,
L(U(l‘,t)”x:b = Ub(t)

where L is a linear operator; u,, up, and ug are giv-
en functions. According to the values of L, equa-
tions (1) —(2) give rise to the so called Cauchy, Dirich-
let, Neumann, or Robin problem [14]. If we are look-
ing for a solution u(x,t) of (1), (2) to be expressed as
a series of independent functions such as polynomials
{x®}, or trigonometric functions {sin(«x)} or other
kind of functions we expect also ug, up, up to be-
long to the same class of functions as u(z,¢). When
at least one of the “starting” functions w,, up, g
i1s a discontinuous function, the best approximation
of the singularity is given by the wavelets, therefore
a representation of u(z,t) as series of wavelets is the
most suitable way to approach problems (1), (2) with
starting discontinuities.

In order to build up a numerical approximation of
the solution of a given problem (1), (2) let us first
discretize the xz-domain €2 into a set of M points
x;, with zo=a, 3 _1=>, so that in each point x;,
i=0,..., M—1the unknown function u(x,t) becomes
the unknown function of ¢: u(x;,t). Assume that the
solution is L (square summable function) and can
be expressed as (see e.g. [14])

u(e,t) 2> en(t) Fo(x) (3)

with M (in general) independent on N, and Fj,(x)
orthonormal functions:

/w(x)Fr(x)Fs(x)dx = dpsbpg
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being é,; the Kronecker symbol; w(x) a weight func-
tion; d, 4 the suitable coefficients to get the orthonor-
mality. By multiplying (3), integrating over € and
taking into account of the above equation, there fol-
low the coefficients

en(t) = /Fn(x)u(x,t)dx,

Q

(4)

so that in a discrete time evolution problem:

0<t, & =jAt, j=01,...
it is
cn(0) = /Fn(x)uo(x)dx,

Q

and, since ug(x) is assumed to be given, the represen-
tation (3) of u(x,t), at the initial time, gives the input
set of discrete values for a numerical recursive formula
in order to evaluate u(x,t) at subsequent time steps
t.

The space derivatives can be evaluated as fol-
lows [14]:

8_u
oz

Pu & d*F,(x)
w — Z Cn (t) dl‘z )

and in each point z;

8ui dﬁf 8u ~ N an(l‘)
69@ a 8_90 x:x,_nzz;)cn(t) dx x:x,’
N (6)
62%’ def 82u ~ szn(l‘)
- | S e |

The partial derivatives with respect to x, become
functions of time ¢ only:

8ui al
Oz = ZAzncn (t)a

n=0

(7)

9%, N
Oz2 = Z Bincn (t)a

n=0

being
def an(l‘)

Ain = )
dx r=x;
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independent on ¢. Thus, at time step ¢; equation (1)
becomes

du,

dt

i=0,... M—1,

= fn(t]auna$ZaAlnaBln)a

n=0,...,N, h=0,1,...

The integration of equation (1) is transformed into
an ordinary system of differential equations, but still
there are some crucial points in the application of this
method, namely:

e since there are some integrals (4) to be evaluat-
ed one has to carefully discretize the domain €2,
in order to optimize the efficiency of the calcula-
tions (see section 5).

e we are going to use the Haar wavelets, which are
either zero or constant, therefore we must con-
sider some interpolating functions of the Haar
wavelet in order to enable the calculation of (at
least) the second order derivatives with respect
to x (see section 6).

2. HAAR AND PERIODIC WAVELETS

In the spectral representation (3) we consider as
functions Fy,(x) the Haar family of wavelets [1-5],
based on two fundamental functions the so-called
scaled function ®(x) and the corresponding wavelet
U(x). The Haar function has a constant value in a
suitable interval and vanishes in its complement in R.

Let ACR and 14(x) the function defined as

1 (x €A,
1A(l‘) = <
0 (z¢&A),

the Haar scaling function, in the interval [0, 1], is

1[0,1) (%)

and satisfies the integral conditions

(8)

7@@)@:1, /Oo|<I>(a:)|dx:1. 9)

Strictly related to ®, the Haar wavelet ¥(z) (in
[0,1]) is

V(z) = 1p,1/2)(%) — L(1y2,17(7).

It is a function with compact support in [0, 1], that
trivially vanishes outside [0, 1], and satisfies the con-
ditions

(10)

7 U(x)de = 0, /Oo () de=1. (11

Both functions ® and ¥ are related by a recursive
formula

{ O(z) =D(2x) + P22 — 1),
(12)

U(x) =V(2x) — ¥(2z —1).

Function ¥(z), defined on [0, 1), as well, as ®(x) can
be easily prolonged to R by scaling and translating.
The functions

U, (r) < S 2 P2 (x — j) — k),
jeZ
n,jez

(13)
are periodic wavelets of period 1, zero everywhere but
in the interval

k Ck+1/2

5 o il

k+1/2 k+1
on b —i )

In the same intervals we can define the family of scal-
ing functions

O () B 2202 (- ) — k),
JjEZ
JEZ.
It can be easily shown that (13) vanish identically
when n<0. It is

\Ijn,k = \Ijn,k+2"a

and, if we restrict to the interval [0, 1), the property

Y2 )~ ) = W@ (@ - ) - k),

jEZn>0, k=0,1,...,2"—1

holds. The family of wavelets are bases for Lo func-
tions, so that each point (Z,7y) of RxR might be
expressed by (7, 2"/?W(2"% — k)) for suitable (n, k).
Thus, each point of RxR becomes function of two
parameters (n, k), in the functional space whose gen-
erator are {27/2W (27 — k)}, which are orthonormal

bases for Ls.

3. MULTISCALE ANALYSIS AND HAAR REP-
RESENTATION

Let {V,, }nez be the subset of Ly defined as the set
of functions f(x) of compact support

- def F)e L - f(x) const Vx € Ap p,
n — r)E )= ,
’ 0 Ved A,
a [k (K+1)
Apn = kez.
k, |:2n’ 9n )a €
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Functions f(z) and subsets V, fulfill the following
relations:

f(x) € V) <= f(22) € Vg1,
V., C Vn+1,
{UnEZvn} - LZ;

ﬂneZVn = @

Furthermore, there exists a function ®(x) such that
{®(x—k)}rez is an orthonormal basis in V5. This ax-
iom together with the first equation from (14) implies
that also {27/2®(2?x—k)}rez is an orthonormal ba-
sis in V,,. However, the set {2”/2@(2”1‘—/6)};67”62 is
not a basis for the funcions of Lo, because the sub-
spaces V,, are not mutually orthogonal. They become
orthogonal adding the complementary subspace (of
wavelet) W, so that

Vn+1 - Vn ©® Wn;

where @ is the direct sum of orthogonal subspaces.
As a consequence the space Lo 1s “reconstructed” as

Ly = Vo @ (@2 Wh) (15)

when n>0, and Vn
LZ — @nEZWn;

so that Lo 1s the direct sum of orthogonal subspaces
of wavelets W, . In each W, the basis functions are

(n is fixed)

U ule) & {20 -0} (16)
knez
and for variable n the all set of functions ¥, j, repre-
sents an orthonormal basis for Ls.
Any Lo-function f(x) can be written in a scaling
function representation as

floy= > ap2?e2"z — k), (17)
nkez
where
+oo
an / F(@)2 20 (2" x — k)d. (18)
The wavelet (Haar) representation is
fe)y= > B2 ?u(@ s — k), (19)

nkez
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where
+oo
n ef / F(@)2"?0 (27 — k)de. (20)

Although, equation (19) is called wavelet representa-
tion of the function f(x), the right hand side contains
both scaling functions and wavelet functions.

Once ¥ (x) is given, the functional dependence on
the factor 27, through the parameter n, produces a
scaling of ¥(x) while a non-trivial k& translates ¥(x)

either rightward (k>0), or leftward (k<0).

4. DISCRETE HAAR SERIES

In order to show the application of this method we
resctrict ourselves to a La function f(x) defined in the
unit interval [0, 1). Consider a domain € discretized
in M sub-intervals at points

reo= =

J M ’
According to equation (3), and using a wavelet basis,
our approximation formula at a given time ¢ will be

u(x, 1) = Z en (¥, (),

and since ¥, (x) is a function of two parameters n, k
we have

N 2M_q (21)

£33 dufr @2 w2 — k),

n=0 k=0
so that the value of u(z,?) at the nodal points z; is

uj = u(z;, 1) = ag @)+

N 2M_q (22)

303 A O (2 e — k),

n=0 k=0

where dps 1s the correction factor. The coefficients
af, A2 at time ¢ will be computed by a FHT, or fast
Haar transform (see section 5).

5. FAST HAAR TRANSFORM

In this section, we will show how to compute the
coefficients «f), 3% of the wavelets in equation (21)
in order to obtain the wavelet series of a function
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f(x)défu(x,f). In fact, for a fixed ¥ we assume that
u(z,t) depends only on x. Furthermore, according to
axioms (14) together with the completeness of the
space Lo, we assume that after N approximation
steps 1t is

La(R) = Vo @ (®h_o W),

that is (when n+1=N)

def

aévgfka fk — f( )|x:xka
0<k<M-1.

(23)

It is known that in order to optimize the efficien-
cy of calculus one has to choose a number of points
equal to a power of 2 [5,11,12, 15], for we take
M =2% which implies a number of basis wavelets
N=logs, M=R. In other words, we should dis-
cretize Q in either 1,2,4,8, ..., 2% intervals, to which
correspond 1,2,3, ..., R (fundamental) wavelets and
2,3,5,9,...,2% 41 nodal points z;.

Equations (12) imply a set of relations among the
coefficients of the spectral decomposition of f(z) with
respect to ®(z) and ¥(z). From the definition

ndef / f 2n/2q) l‘—k’)d

"def/f )220 (2" — k)de,

taking into account equations (12), to arbitray n and
k there follows

n n 1 n 1
Oy = 7‘3‘2: \/— 2lj_+1’
6[? _ L n+1 1 n+1 (24)
\/— \/— Xopy1s
k=0,... M/2—1.

These equations can be written in a symbolic form:

ou = OBL (25)
with
N
act | /2 2 ,det [ af
o | 2 V3| B [ﬁg], 5
G 7 (26)
s=0,... M—1
8

In order to derive the coefficients (26) (the sec-

ond equation) of the matrix B’, we assume, ac-

cording to (23), that the M values f; are known
1

(k=0,...,M—1), so that of, are known.
Let
Jfo
N
FE |, M=28—1 (27)
Iy
It 1s
f= B?Ma
or explicitly
R R R R aR R r
BZM_ aOaala"'aaM/2—1a60aﬁla"'aBM/2—1 3

where 7' stands for transpose. From the knowledge
of the matrix BE,, one has to construct the matrix
ij‘}l and so forth until we get BY,,. Once BY,,,
0<s<R—1 1is determined one should extract the
submatrix of the coefficients 55, 0<h<M—-1. To

this purpose let us define the direct sum of matrices

ar [ S 0 ]
0 ... 0]
0 ... 0|

and the M x M orthogonal matrix

H, = o /0.
Then, taking into account of the orthogonality of Hps
we can solve equation (25) to have (see e.g. [11])

Hyf =X, =B,

-1

where ij\zl contains the coefficients af mixed

with i1

in the form

XRl

[ R—-1 pR-1 R—-1 pR-1
2M

0 ) , y 1 yooe

M/2 1’6M/2 1] :

From the above, by multiplying for a permutation
matrix Py we get

BR 1 PMXR 1

we are 1n-
R-1

From the knowledge of the vector BR_l,
tersted only of the first M coefficients, namely o,
s=0,..., M, thus if we multilpy BR i by the M x M
unit matrix Iy we obtain a new Vector to replace

C. Cattani, M. Pecoraro
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f in the same routine. We restart the same proce-
dure based in two steps: (product by Hys and sub-
sequent permutation by Pys) to obtain the following
Bﬁ_z and so on until we get B%,. In other words
we repeat the same procedure until the number of
the coefficients, to be evaluated, is two. At this stage
R=log2M, ®(x) is characterized by only one coeffi-
cient as well as the corresponding wavelet for R=0.
Shortly the fast Haar transformation H of a vector

fis [11]

HEY (Hy@Iyoo). ..

oo (Pagy2 ® Tagyo) (Haryo @ Tpgyo)ParHpf,

and the reconstruction formula of f(z) is based on
the values set

Ozg = [H fMH )
(28)

=0,... log M 1
{51?}2:0,...,71% =[H fM]i:l,...,M’

that is the first components of H f3 is af), the re-
maining components are 3} .
The inverse transformation is [11]

_q1 def
Ho = HTMPTM(HTM/z@IM/Z)(Pg/[/z@IMﬁ)'“

.. (Hg D IM_Q).

It can be easily proven that, from numerical point
of view, H requires only O(M) operations, i.e., is
linear on M, while, for example, the celebrated FFT
requires O(M log M), showing the advantage (among
others) of using the discrete Haar transformation (al-
so called forward Haar wavelet transform [7]).

6. SPLINES

Once we have a wavelet representation (19) of
the function f(z), since we are using Haar wavelets
(which are piecewise constant functions) we can easily
integrate f(z). Unfortunately the derivative of Haar
wavelets, and then f(z), vanishes trivially. Thus, if
we want to apply equations (6), in order to get (7),
to the wavelet representation (22) of the approximat-
ed function u(z) we should “transform” the piece-
wise functions in non-trivially differentiable func-
tions. This can be done, for instance, with spline
interpolation. An m-order spline, in a discretize in-
terval, 1s a family of m-polynomials each one defined
in a subinterval that meet some smoothness condi-
tions at the nodes.

Equation (22), in short, is a piecewise function of

the kind
f(l‘,t) = Zps(xat)(sx—sa
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where
0, k#s,
Osk = T =Tk,
1, k=s,
def
ps(x’t) = N 2M_1 (29)
0
A0S Y
= = r# zp.
X B0 ()22 (27 — k),

Therefore, in order to derive a spline interpolation,
we might restrict ourselves to the Kronecker delta

function 6;_;, defined as

5 'dﬁf< 1, i=j,
N0, i # ]
The only non-vanishing value of ¢;_;, in the in-
terval [—1,1], is in 0. Nodal points z in [—1,1]
are {—1,0, 1}, with corresponding y-values, {0,1,0}.
Thus, if we want a linear spline, we divide the in-
terval [—1,1] into [—1,0]U[0, 1] with nodal points
{=1,0}U{0,1}. In each subinterval we construct a
linear spline (order 1). If we divide further, we have
[—1,—1/2]U[-1/2,0]U[0,1/2]U[1/2,1] , with nodal
points {—1,—1/2,0,1/2,1}, and we can define a sec-
ond order polynomial in each sub interval. Doing so,
we can divide each interval as much as we need in or-
der to obtain an m-order spline interpolation of the
initial piecewise function.

ij€eZ.

7. THE NONLINEAR HEAT EQUATION

The nonlinear heat equation is
Ju 0 Ju
If the conductivity is assumed to be
k(u) =14 hu, h = const,

the equation (30) becomes

du u\’ 0%u

Consider for the unknown function u(x,t), the
wavelet representation (21) with 7 ranging in [0, 7'].
According to equations (5), (7), and using the
Galerkin method, the equation (31) becomes a sys-
tem of binary differential equations in the coefficients

i

(31)

2
M

+ (1 —|—hu]')ZBiju]',

ji=1

du; M
a - h ;AUW

which can be easily solved by ordinary numerical
methods.
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CONCLUSION

We have discussed the wavelet representation

method applied to the solution of nonlinear partial

differential equations.

In particular, the numerical

solution of the nonlinear heat equation is sketched.
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