
ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10517.52 NONLINEAR DIFFERENTIAL EQUATIONSIN WAVELET BASESC. CATTANI�, M. PECORARO���Department of Mathematics \G. Castelnuovo",University of Rome \La Sapienza"��Department of Engineering and Applied Mathematics,University of SalernoReceived 16.06.2000In this paper we discuss the problem of �nding numerical solution of some nonlinear di�erential equations using waveletbases. It is also given a short outline of the method in dealing with the nonlinear heat equation.� áâ ââ÷ ®¡£®¢®àîõâìáï ¯à®¡«¥¬  ç¨á¥«ì®£® à®§¢'ï§ ï ¤¥ïª¨å ¥«÷÷©¨å ¤¨ä¥à¥æ÷©¨å à÷¢ïì ÷§ ¢¨ª®à¨áâ -ï¬ ¢¥©¢«¥â-¡ §¨á÷¢. � ÷© â ª®¦ ¤ ® ª®à®âª¨© ®¯¨á ¬¥â®¤ã à®§¢'ï§ ï ¥«÷÷©®£® à÷¢ïï â¥¯«®¯à®¢÷¤®áâ÷.� áâ âì¥ ®¡áã¦¤ ¥âáï ¯à®¡«¥¬  ç¨á«¥®£® à¥è¥¨ï ¥ª®â®àëå ¥«¨¥©ëå ¤¨ää¥à¥æ¨ «ìëå ãà ¢¥¨© á ¨á-¯®«ì§®¢ ¨¥¬ ¢¥©¢«¥â-¡ §¨á®¢. � ¥© â ª¦¥ ¤ ® ªà âª®¥ ®¯¨á ¨¥ ¬¥â®¤  à¥è¥¨ï ¥«¨¥©®£® ãà ¢¥¨ï â¥¯«®-¯à®¢®¤®áâ¨.INTRODUCTIONIt has been recently shown that wavelet theo-ry [1 { 5] is a powerful method for the numericalmodelling of linear and nonlinear di�erential equa-tions [6 { 10]. However human experience tell us thatthe physics of the real word cannot be interpretedwith linear equations. Mostly, there are nonlinearequations, which give us a real modelling of nature.On the other hand phenomena usually have a veryshort range of existence and a very high intensity inorder to make inuence on the environment. Thus,a localized analysis [1 { 5] seems to be the most con-venient approach to the study of phenomena. Forinstance functions, like a delta Dirac or a more gen-eral distribution or simply an impulse function havebeen hardly accepted within a mathematical mod-el because of the peculiarity in treating functionsvanishing nearly everywhere but in a discrete set ofpoints. In correspondence of the singularity, very of-ten a wrong practice suggest us to remove the singu-larity. However, some phenomena are interesting justwhen the singularities \appears", therefore remov-ing the singularity means canceling the phenomenon.Wavelets are very well localized functions, and, sincethey are zero nearly everywhere, they can be easilytreated in numerical applications.In this paper, the numerical approach to a di�eren-tial equation is based on the representation of the un-known function in a given basis of fundamental func-tions, together with its derivatives. Like in the so-called collocation methods, the value of the unknownfunction will be a linear combination of known dis-

crete values with some coe�cients to be determined.We will choose the Haar family of wavelets as basis,and the coe�cients will be computed by the fast Haartransform (see e. g. [5,11,12]). The problem of repre-senting the derivatives of the unknown function willbe solved smoothing the Haar wavelets with suitableorder splines.The problem of numerically solving nonlinear equa-tions is given in section 1, then after some preliminaryde�nitions on the Haar and on the periodic wavelets(section 2), the wavelets representations are de�nedin section 3. The wavelet (discrete) representation isdiscussed in section 4 and the fast Haar transformis described in section 5. A smoothing process, suit-able for the wavelets is given in section 6, and a �nalexample is sketched in section 7.1. NUMERICAL SOLUTIONS OF NON-LINEAR DIFFERENTIAL EQUATIONS:L2-APPROXIMATIONA class of methods for the numerical solution ofdi�erential equations consists in the so-called col-location (pointwise) methods. The solution is as-sumed to be known in a discrete set of points (nodes),and extended by a series containing the known val-ues and a basis set of functions. This basis shouldbe carefully chosen in order to obtain the conver-gence [6,8,9,13,14] of the numerical method and thecompleteness of the functional space.4 c C. Cattani, M. Pecoraro, 2000



ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10Consider the nonlinear partial di�erential equation@u@t = f�t; x; u; @u@x; @2u@x2 ; : : :�; (1)and assume without restrictions that u=u(x; t) withx2
�R and f 2R. If the domain 
 is unbounded, asimple transformation (see e. g. [14]) of the variable xleads us to an equivalent equation on a bounded do-main thus we consider 
=[a; b] where a<1, b<1.Moreover, if the function f , in the right hand sideof (1), depends on higher order derivatives of u withrespect to t, the equation (1) can be transformed in-to a system of equations containing only �rst orderderivatives with respect to t, therefore we assumethat, with respect to t, f depends only on @u=@t.Together with (1) it comes a set of conditions (initialand/or boundary)u(x; t)jt=0 = u0(x) 8x 2 [a; b];( L(u(x; t))jx=a = ua(t)L(u(x; t))jx=b = ub(t) 8t 2 R; (2)where L is a linear operator; ua, ub, and u0 are giv-en functions. According to the values of L, equa-tions (1) { (2) give rise to the so called Cauchy, Dirich-let, Neumann, or Robin problem [14]. If we are look-ing for a solution u(x; t) of (1), (2) to be expressed asa series of independent functions such as polynomialsfx�g, or trigonometric functions fsin(�x)g or otherkind of functions we expect also ua, ub, u0 to be-long to the same class of functions as u(x; t). Whenat least one of the \starting" functions ua, ub, u0is a discontinuous function, the best approximationof the singularity is given by the wavelets, thereforea representation of u(x; t) as series of wavelets is themost suitable way to approach problems (1), (2) withstarting discontinuities.In order to build up a numerical approximation ofthe solution of a given problem (1), (2) let us �rstdiscretize the x-domain 
 into a set of M pointsxi, with x0=a, xM�1=b, so that in each point xi,i=0; : : : ;M�1 the unknown function u(x; t) becomesthe unknown function of t: u(xi; t). Assume that thesolution is L2 (square summable function) and canbe expressed as (see e. g. [14])u(x; t) �= NXn=0 cn(t)Fn(x) (3)with M (in general) independent on N , and Fn(x)orthonormal functions:Z
 !(x)Fr(x)Fs(x)dx = drs�rs

being �rs the Kronecker symbol; !(x) a weight func-tion; drs the suitable coe�cients to get the orthonor-mality. By multiplying (3), integrating over 
 andtaking into account of the above equation, there fol-low the coe�cientscn(t) = Z
 Fn(x)u(x; t)dx; (4)so that in a discrete time evolution problem:0 � t; tj = j�t; j = 0; 1; : : :it is cn(0) = Z
 Fn(x)u0(x)dx;and, since u0(x) is assumed to be given, the represen-tation (3) of u(x; t), at the initial time, gives the inputset of discrete values for a numerical recursive formulain order to evaluate u(x; t) at subsequent time stepstj.The space derivatives can be evaluated as fol-lows [14]: @u@x �= NXn=0 cn(t)dFn(x)dx ;@2u@x2 �= NXn=0 cn(t)d2Fn(x)dx2 ; (5)and in each point xi8>>>>>><>>>>>>: @ui@x def= @u@x ����x=xi�= NXn=0 cn(t) dFn(x)dx ����x=xi ;@2ui@x2 def= @2u@x2 ����x=xi�= NXn=0 cn(t) d2Fn(x)dx2 ����x=xi : (6)The partial derivatives with respect to x, becomefunctions of time t only:@ui@x = NXn=0Aincn(t);@2ui@x2 = NXn=0Bincn(t); (7)being Ain def= dFn(x)dx ����x=xi ;Bin def= d2Fn(x)dx2 ����x=xiC. Cattani, M. Pecoraro 5



ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10independent on t. Thus, at time step tj equation (1)becomes dundt = fn(tj ; un;xi; Ain; Bin);i = 0; : : : ;M � 1; n = 0; : : : ; N; h = 0; 1; : : :The integration of equation (1) is transformed intoan ordinary system of di�erential equations, but stillthere are some crucial points in the application of thismethod, namely:� since there are some integrals (4) to be evaluat-ed one has to carefully discretize the domain 
,in order to optimize the e�ciency of the calcula-tions (see section 5).� we are going to use the Haar wavelets, which areeither zero or constant, therefore we must con-sider some interpolating functions of the Haarwavelet in order to enable the calculation of (atleast) the second order derivatives with respectto x (see section 6).2. HAAR AND PERIODIC WAVELETSIn the spectral representation (3) we consider asfunctions Fn(x) the Haar family of wavelets [1 { 5],based on two fundamental functions the so-calledscaled function �(x) and the corresponding wavelet	(x). The Haar function has a constant value in asuitable interval and vanishes in its complement in R.Let A�R and 1A(x) the function de�ned as1A(x) = * 1 (x 2 A);0 (x 62 A);the Haar scaling function, in the interval [0; 1], is�(x) def= 1[0;1)(x) (8)and satis�es the integral conditions1Z�1 �(x)dx = 1; 1Z�1 j �(x) j dx = 1: (9)Strictly related to �, the Haar wavelet 	(x) (in[0; 1]) is 	(x) = 1[0;1=2)(x) � 1(1=2;1](x): (10)It is a function with compact support in [0; 1], thattrivially vanishes outside [0; 1], and satis�es the con-ditions1Z�1 	(x)dx = 0; 1Z�1 j	(x)jdx = 1: (11)

Both functions � and 	 are related by a recursiveformula ( �(x) = �(2x) + �(2x� 1);	(x) = 	(2x)� 	(2x� 1): (12)Function 	(x), de�ned on [0; 1), as well, as �(x) canbe easily prolonged to R by scaling and translating.The functions	n;k(x) def= Xj2Z 2n=2	(2n(x� j) � k);n; j 2 Z (13)are periodic wavelets of period 1, zero everywhere butin the interval � k2n � j; k + 1=22n � j� ;�k + 1=22n � j; k + 12n � j� :In the same intervals we can de�ne the family of scal-ing functions�n;k(x) def= Xj2Z 2n=2�(2n(x� j) � k);j 2 Z:It can be easily shown that (13) vanish identicallywhen n<0. It is 	n;k = 	n;k+2n;and, if we restrict to the interval [0; 1), the propertyXj2Z 2n=2	(2n(x� j) � k) = 	(2n(x� j) � k);j 2 Z; n � 0; k = 0; 1; : : : ; 2n � 1holds. The family of wavelets are bases for L2 func-tions, so that each point (x; y) of R�R might beexpressed by (x; 2n=2	(2nx� k)) for suitable (n; k).Thus, each point of R�R becomes function of twoparameters (n; k), in the functional space whose gen-erator are f2n=2	(2nx� k)g, which are orthonormalbases for L2.3. MULTISCALE ANALYSIS AND HAAR REP-RESENTATIONLet fVngn2Z be the subset of L2 de�ned as the setof functions f(x) of compact supportVn def= (f(x)2L2 : f(x)=* const 8x 2 Ak;n;0 8x 62 Ak;n ) ;Ak;n def= � k2n ; (k + 1)2n �; k 2 Z:6 C. Cattani, M. Pecoraro



ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10Functions f(x) and subsets Vn ful�ll the followingrelations:8>>>>>><>>>>>>: f(x) 2 Vn () f(2x) 2 Vn+1;Vn � Vn+1;f[n2ZVng = L2;\n2ZVn = ;: (14)Furthermore, there exists a function �(x) such thatf�(x�k)gk2Z is an orthonormal basis in V0. This ax-iom together with the �rst equation from (14) impliesthat also f2n=2�(2nx�k)gk2Z is an orthonormal ba-sis in Vn. However, the set f2n=2�(2nx�k)gk;n2Z isnot a basis for the funcions of L2, because the sub-spaces Vn are not mutually orthogonal. They becomeorthogonal adding the complementary subspace (ofwavelet) Wn, so thatVn+1 = Vn �Wn;where � is the direct sum of orthogonal subspaces.As a consequence the space L2 is \reconstructed" asL2 = V0 � (�1n=0Wn) (15)when n>0, and 8nL2 = �n2ZWn;so that L2 is the direct sum of orthogonal subspacesof wavelets Wn. In each Wn the basis functions are(n is �xed)	n;k(x) def= n2n=2	(2nx� k)ok;n2Z ; (16)and for variable n the all set of functions 	n;k repre-sents an orthonormal basis for L2.Any L2-function f(x) can be written in a scalingfunction representation asf(x) = Xn;k2Z�nk2n=2�(2nx� k); (17)where �nk def= +1Z�1 f(x)2n=2�(2nx� k)dx: (18)The wavelet (Haar) representation isf(x) = Xn;k2Z �nk 2n=2	(2nx� k); (19)

where �nk def= +1Z�1 f(x)2n=2	(2nx� k)dx: (20)Although, equation (19) is called wavelet representa-tion of the function f(x), the right hand side containsboth scaling functions and wavelet functions.Once 	(x) is given, the functional dependence onthe factor 2n, through the parameter n, produces ascaling of 	(x) while a non-trivial k translates 	(x)either rightward (k>0), or leftward (k<0).4. DISCRETE HAAR SERIESIn order to show the application of this method weresctrict ourselves to a L2 function f(x) de�ned in theunit interval [0; 1). Consider a domain 
 discretizedin M sub-intervals at pointsxj = jM ; j = 0; : : : ;M � 1:According to equation (3), and using a wavelet basis,our approximation formula at a given time t will beu(x; t) �= NXn=0 cn(t)	n(x);and since 	n(x) is a function of two parameters n, kwe have u(x; t) �= �00(t)++ NXn=0 2M�1Xk=0 dM�nk (t)2n=2	(2nx� k); (21)so that the value of u(x; t) at the nodal points xj isuj def= u(xj; t) �= �00(t)++ NXn=0 2M�1Xk=0 dM�nk (t)2n=2	(2nxj � k); (22)where dM is the correction factor. The coe�cients�00, �nk at time t will be computed by a FHT, or fastHaar transform (see section 5).5. FAST HAAR TRANSFORMIn this section, we will show how to compute thecoe�cients �00, �nk of the wavelets in equation (21)in order to obtain the wavelet series of a functionC. Cattani, M. Pecoraro 7



ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10f(x)def= u(x; t). In fact, for a �xed t we assume thatu(x; t) depends only on x. Furthermore, according toaxioms (14) together with the completeness of thespace L2, we assume that after N approximationsteps it is L2(R) �= V0 � (�Nn=0Wn);that is (when n+1=N )�Nk �= fk; fk def= f(x)jx=xk ;0 � k � M � 1: (23)It is known that in order to optimize the e�cien-cy of calculus one has to choose a number of pointsequal to a power of 2 [5, 11, 12, 15], for we takeM=2R, which implies a number of basis waveletsN=log2M =R. In other words, we should dis-cretize 
 in either 1; 2; 4; 8; : : :; 2R intervals, to whichcorrespond 1; 2; 3; : : : ; R (fundamental) wavelets and2; 3; 5; 9; : : :; 2R+1 nodal points xj.Equations (12) imply a set of relations among thecoe�cients of the spectral decomposition of f(x) withrespect to �(x) and 	(x). From the de�nition8>>>>>>><>>>>>>>: �nk def= +1Z�1 f(x)2n=2�(2nx� k)dx;�nk def= +1Z�1 f(x)2n=2	(2nx� k)dx;taking into account equations (12), to arbitray n andk there follows�nk = 1p2�n+12k + 1p2�n+12k+1;�nk = 1p2�n+12k � 1p2�n+12k+1;k = 0; : : : ;M=2� 1: (24)These equations can be written in a symbolic form:Bn2M = OBn+12M (25)withO def= 264 1p2 1p21p2 � 1p2 375 ; Brs def= � �rs�rs � ;s = 0; : : : ;M � 1: (26)

In order to derive the coe�cients (26) (the sec-ond equation) of the matrix Brs, we assume, ac-cording to (23), that the M values fk are known(k=0; : : : ;M�1), so that �R2M are known.Let f def= 26664 f0f1...fM 37775 ; M = 2R � 1: (27)It is f = BR2M ;or explicitlyBR2M = h�R0 ; �R1 ; : : : ; �RM=2�1; �R0 ; �R1 ; : : : ; �RM=2�1iT ;where T stands for transpose. From the knowledgeof the matrix BR2M one has to construct the matrixBR�12M and so forth until we get B02M . Once Br2M ,0�s�R� 1 is determined one should extract thesubmatrix of the coe�cients �rh, 0�h�M�1. Tothis purpose let us de�ne the direct sum of matricesS�Q def= � S 00 Q � ;0 def= 264 0 : : : 0... . . . ...0 : : : 0 375 ;and the M�M orthogonal matrixHM = �M=2s=1O:Then, taking into account of the orthogonality ofHMwe can solve equation (25) to have (see e. g. [11])HM f = XR�12M ; f = BR2M ;where XR�12M contains the coe�cients �R�1h mixedwith �R�1h in the formXR�12M = [�R�10 ; �R�10 ; �R�11 ; �R�11 ; : : :: : : ; �R�1M=2�1; �R�1M=2�1]T :From the above, by multiplying for a permutationmatrix PM we getBR�1M = PMXR�1M :From the knowledge of the vector BR�1M , we are in-tersted only of the �rst M coe�cients, namely �R�1s ,s=0; : : : ;M , thus if we multilpyBR�1M by the M�Munit matrix IM we obtain a new vector to replace8 C. Cattani, M. Pecoraro



ISSN 1028 -7507 �ªãáâ¨ç¨© ¢÷á¨ª. 2000. �®¬ 3, N 4. �. 4 { 10f in the same routine. We restart the same proce-dure based in two steps: (product by HM and sub-sequent permutation by PM ) to obtain the followingBR�2M and so on until we get B2M . In other wordswe repeat the same procedure until the number ofthe coe�cients, to be evaluated, is two. At this stageR=log2M , �(x) is characterized by only one coe�-cient as well as the corresponding wavelet for R=0.Shortly the fast Haar transformationH of a vectorf is [11] H f def= (H2 � IM�2) : : :: : : (PM=2 � IM=2)(HM=2 � IM=2)PMHM f ;and the reconstruction formula of f(x) is based onthe values set �00 = [H fM ]11 ;f�nk gn=0;:::;logMk=0;:::;n = [H fM ]1i=1;:::;M ; (28)that is the �rst components of H fM is �00, the re-maining components are �nk .The inverse transformation is [11]H�1 def= HTMPTM (HTM=2 � IM=2)(PTM=2 � IM=2) : : :: : : (HT2 � IM�2):It can be easily proven that, from numerical pointof view, H requires only O(M ) operations, i. e., islinear on M , while, for example, the celebrated FFTrequires O(M logM ), showing the advantage (amongothers) of using the discrete Haar transformation (al-so called forward Haar wavelet transform [7]).6. SPLINESOnce we have a wavelet representation (19) ofthe function f(x), since we are using Haar wavelets(which are piecewise constant functions) we can easilyintegrate f(x). Unfortunately the derivative of Haarwavelets, and then f(x), vanishes trivially. Thus, ifwe want to apply equations (6), in order to get (7),to the wavelet representation (22) of the approximat-ed function u(x) we should \transform" the piece-wise functions in non-trivially di�erentiable func-tions. This can be done, for instance, with splineinterpolation. An m-order spline, in a discretize in-terval, is a family of m-polynomials each one de�nedin a subinterval that meet some smoothness condi-tions at the nodes.Equation (22), in short, is a piecewise function ofthe kind f(x; t) �=Xs ps(x; t)�x�s;

whereps(x; t)def= 8>>>>>>>><>>>>>>>>:�sk=* 0; k 6=s;1; k=s; x = xk;�00(t)+ NXn=0 2M�1Xk=0 dM���nk (t)2n=2	(2nx�k); x 6= xk: (29)Therefore, in order to derive a spline interpolation,we might restrict ourselves to the Kronecker deltafunction �i�j , de�ned as�i�j def= � 1; i = j;0; i 6= j; i; j 2 Z:The only non-vanishing value of �i�j , in the in-terval [�1; 1], is in 0. Nodal points x in [�1; 1]are f�1; 0; 1g,with corresponding y-values, f0; 1; 0g.Thus, if we want a linear spline, we divide the in-terval [�1; 1] into [�1; 0][[0; 1] with nodal pointsf�1; 0g[f0; 1g. In each subinterval we construct alinear spline (order 1). If we divide further, we have[�1;�1=2][[�1=2; 0][[0;1=2][[1=2;1] , with nodalpoints f�1;�1=2; 0; 1=2;1g, and we can de�ne a sec-ond order polynomial in each sub interval. Doing so,we can divide each interval as much as we need in or-der to obtain an m-order spline interpolation of theinitial piecewise function.7. THE NONLINEAR HEAT EQUATIONThe nonlinear heat equation is@u@t = @@x �k(u)@u@x� : (30)If the conductivity is assumed to bek(u) = 1 + hu; h = const;the equation (30) becomes@u@t = h�@u@x�2 + (1 + hu)@2u@x2 : (31)Consider for the unknown function u(x; t), thewavelet representation (21) with t ranging in [ 0; T ].According to equations (5), (7), and using theGalerkin method, the equation (31) becomes a sys-tem of binary di�erential equations in the coe�cients�nk : duidt = h24 MXj=1Aijuj352 + (1 + huj) MXj=1Bijuj;which can be easily solved by ordinary numericalmethods.C. Cattani, M. Pecoraro 9
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