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In this paper we discuss the problem of representing hyperbolic differential operators using orthonormal wavelet bases.
A numerical algorithm is shortly outlined and a numerical experiment in the linear magnetohydrodynamics, as a test

problem, is eventually outlined.

B craTTi 06ropopeHo npobieMy NpeAcTaBleHHs rinepGoniyaux AndepeHIINHNX ONepaToPiB 3 BUKOPUCTaHHAM OPTOHOD-

MOBAHUX BENBIET-6ABUCIB.

KopoTko onmncano pospaxyHKOBUH allOPUTM, & TaKOX YHCEILHUH eKCIEPUMEHT 5 06IacTi

NMHITHOT MarHiTOrAPOAMHAMIKY, SKUHA BUCTYIAe B POJl TECTOBOI 3aqadl.

B crarbe obcyxaeHa npobreMa NpeAcTaBleHUsa runepbonnyieckux AnddepeHnnanbHbBIX ONePaTOpPOB ¢ UCIONIbL3OBAHIEM
OPTOHOPMUPOBAHHBIX BeHBIeT-6asucoB. KopoTKo onHMcaH pacdeTHHIN AllOPUTM, a TakXKe YNCIEHHBIH SKCIEPUMEHT U3
061acTl NTUHERHON MarHUTOTUAPOANHAMHUKY, BEICTYIAIONINN B POIM TECTOBOH Bajatn.

INTRODUCTION

Wavelet theory [1,2] has been quite recently ap-
plied to the numerical modelling of differential equa-
tions [3—6]. Tt founds wide application in modern
acoustics and hydrodynamics when desctribing the
processes going with different time-frequency scales.

The main feature of this method is providing an
efficient approximation for functions in the wavelet
bases of a suitable functional space. Furthermore,
from the point of view of the numerical computa-
tion, fast algorithms for the wavelet transform are
available [1,7], and these algorithms are proven to
be much faster than the well known (and celebrated)
fast Fourier transform (see e.g. [7,8]).

A localized analysis [1,2] seems to be the most con-
venient approach for studing phoenomena, in partic-
ular nonlinear. In fact, impulse functions and distri-
butions, performing singularities, are well represent-
ed by their spectral decomposition in a wavelet bases.
Wavelets are very well localized functions [1,2], and,
since they are zero nearly everywhere, they can be
easily treated in numerical applications. The numer-
ical approach to a differential equation is based on
the representation of the unknown function, with its
corresponding derivatives in a wavelet bases, and like
in the collocation (or pointwise) method, the value
of the unknown function will be a linear combina-
tion of known values at sampling locations. We will
choose the Haar family of wavelets as bases, and the
coefficients will be computed by the fast Haar trans-
form (see e.g. [2,4,7,8]). The problem of represent-
ing the derivatives of the unknown function will be
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solved smoothing the Haar wavelets with suitable or-
der splines.

As application of this method we will approach
the fundamental equations of magnetohydrodynam-
ics (section 1) which are based on a hyperbolic sys-
tem of differential equations (in general non symmet-
ric, see section 2). Theorems for the existence and
uniqueness solution of hyperbolic system of magne-
tohydrodynamics in suitable spaces (section 3), are
known (see e.g. [9] and therein quoted references),
also in some special case (see [9] for dissipative bound-
ary conditions), but exact solutions are always hardly
recovered. In this paper it is shown the construction
of the Haar wavelet(section 4) solution of this hy-
perbolic system. Wavelets are bases in the so-called
adaptive spaces (section 5); the collocation method
referred to these, with a smoothing process of the
Haar wavelets, will be discussed in section 6. The
explicit numerical method is eventually sketched in
section 7.

1. MAGNETOHYDRODYNAMICS

Let © be a domain of R3| x= (21, 22, #3) an arbi-
trary point and [ a finite interval of the time variable
[

bl

Idéf{t:0<t<T,T<oo},

Q¥ axr.
The electric field, the magnetic field and the speed
of electrons are the vectors H, E, v respectively; p 1s
the scalar pressure of the electrons. The equations of
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magnetohydrodynamics are summarized by the sys-
tem (see e.g. [9])

OH
2~ _VXE-K,
Ho 5t 8
E
ana—t:VxH—l—enov—J,
) )
mnOE:—Vp—eno(E—l—va)—l—F,
1 dp
@y )
nomuv2 Ot v

in @, where K is the magnetic current; J is the elec-
tric current; F is the external body force, ® is the
flux, B 1s the magnetic induction; n, and v, are the
mean density of electrons and mean speed of elec-
trons respectively. Parameters e, ¢, and p, represent
the charge of the electron, the dielectric constant and
the magnetic permeability, in vacuum, related by the
condition

det 1
? = > vg.
Eoﬂo

Here V is the usual nabla differential operator

def 0 0 0

The initial conditions are

{ H(xz,0) = h(z),
v(z,0) = v(z),

E(z,0) = e(x)

in Q, (2)
p(x,0) = P(x)

where h(z), e(#), v(x) and the scalar function P(x)
are known in €2, while on the boundary 0%, we have

in 0Q x I,

ExH n<0
{ (3)

pv-n<J(
being n the outward normal vector.

For every cube K CR3, the rate of the energy in
the domain QNA at time ¢, is
2
b 2) dz.
NoMo

o

1
3 / det (/Jon +e,EX 4+ nomv? +
QnK

If this integral converges to a finite value, for any
K, then the plasma state is called with finite energy,
or with locally finite energy if it converges only for a
bounded measurable set K.

2. HYPERBOLIC SYSTEMS

Hyperbolic system of differential equations might
be expressed as

du PN
E(x)E_A (a:)a—u—i—B(x)u—l—f(x,t) n
(i=1,...,n),
where the m xm matrices
E=(Eap), A" =(Als), B=(Bap)
(a, 3=1,...,m),

and the m vectors

u=(uy) f=(fa) (@=1,...,m)
are functions of z=(z;) and ¢. When E and A’
(i=1,...,n) are symmetric matrices and F is defi-

nitely positive, system (4) is an hyperbolic symmetric
system.

If we define the electromagnetic state of a
magnetohydrodynamics system (plasma) by the
function H=[H,E,v,p], and the field source by
Flz,t)=[-K,—=J,F,®], system (1) takes the form
(see e.g. [9]) of an hyperbolic symmetric system like
(4), assuming n=3, m=10 and with u=H, f=F:

E(l’)%_t(:Ai(x)aa—;(-l-B(x)H—l—}"(x,t) in Q 5
(i=1,...,n).

The first order differential operator A acting on the
class of C''-functions is defined as

o1

def 5
Al —
OH

AN = (i=1,2,3)

and verifies the condition on the formal adjoint
A*=A. The initial state (2) is represented by

H(x, 1) =0 = H°,
(6)

o et [hz),e(x),v(x), P(x)],

and the boundary conditions (3) might be reduced to
S(H(z,t)) <0in 9Q x I, (7)
being & an algebraic operator.

3. SPACE OF SOLUTIONS

With respect to (4), let us consider only the func-
tions w : D—— H, defined in an arbitrary domain

C. Cattani, L. Toscano
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DCR”, with values into an Hilbert separable space
H, where the inner product is

def f(@)g™ (z)de,

<fa g>H —
D
and the norm of a function is

1l = (£, )
The space

Lo2(D,H) = {u : u 1s measurable in H,

/||u||12qu < oo}
D

is the Hilbert space, moreover
Ly<(D,H) = {u cu € Lo(KN D, H)
¥ bounded measurable set K C R”}

is the space of locally square-integrable functions. We
define the linear subspaces:

Ly(A, D, H) = {u cu € Ly(D, H)
and Au € LQ(D,H/)},

def

LY (A, D, H) < {u cue Lie(D, H)

and Au € leoc(D,H’)},

where A is a linear differential operator A : H — H'
with bounded and measurable coefficients, and, in
particular, it is

def

HYI,H) = Lo(det, I, H).

Let Ty, Ty, I's, T'y be closed linear subspaces
of LZ(VX,Q,RS), LZ(VX,Q,RS), Lz(v~,Q,R3),
L2(V,8,R) respectively, so that HeT;, E€T,,
vels, pely, and

T Dy x Ty x Ty

be a closed linear subspace of La(A,Q,R?).
space

The

F=1Ly(I,0)n H' (I, L2(A,Q,R™))

represents the class of functions H(x,t) for which
EOH/0t, AH, BH exist in Ly(Q;R'?), and satisfies
the conditions (6) —(7), in the sense that H(t) €T for
almost all t€ . In particular, we have the following
solutions (for the weak solutions see [9])

C. Cattani, L. Toscano

Definition 1 H is a FFE-solution of system (5)

with  boundary conditions (6)—(7) in T and
F(x,t) € La(Q; RY), H(2) € Lo(R2) given, if H(t)EF
satisfies:

OH .
EE:AH—I—BTH—}" almost everywere in @, (3)
H(0)="H° almost everywere in €.

Definition 2 H s a LFE-solution of system (5)
with  boundary conditions (6)—(7) in T and
Flz, )€ LY(Q,RY0), He(x)e LY4(Q) given, if

H(t) € F'o¢ satisfies system (8),
where

prioc def {H tH € Ly(I, Lo(A, K NQ))N
NHY(I, Lo(A, K NQ))

V¥ bounded measurable set

K C R3and H(t) € T'°c vt € I}.

In the following we will consider a numerical approx-
imation of a FE-solution (8), in the Haar wavelet
bases.

4. HAAR WAVELETS

In order to obtain an Ls-approximation for the
solution of problem (8), we exploit the collocation
method in a wavelet bases (see e. g. [10] and references
therein), restricting (without any loss of generality)
to dimension 1 (R — R). We consider the Haar
family of wavelets [1,2,11], based on two fundamen-
tal functions: the so-called scaled function ®(z) and
the (mother) wavelet ¥(xz). From the latter, by the
dilation (depending on a scale factor n) and the trans-
lation (depending on k), we will derive the wavelet
bases

def

Uy (z) = {2502 — k), oy (9)

for the Ls-functions.
Let DCR and 1p(x) the rectangle function (with
compact support)

10,1y (),
and the Haar (mother) wavelet ¥(z) is

W(x) =1y 1y(x) — 11 4y (2).
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mex =2 , kmax =2

0.2 .4 0. 0.8 1

Fig. 1. Haar wavelet bases in W3
(D x C[0,1], n=2, 0<k<2)

nex =2, krex =2

0.8 1

ol —

0.2 .4 0.

Fig. 2. Composition of the Haar wavelet bases in W3
(Dnx C[0,1], n=2, 0<k<2)

These functions are related by the recursive formu-
la [1,2]:
250(2%x — k) =

= 02" e — k) + ®(2" e — (k4 1)),
(10)
250 (2" s — k) =

= Q2 — k) — B2 — (k+ 1)),

(n, k€ Z) From the mother wavelet ¥(z), by scal-
ing and translating, it is possible to define the set of
wavelets (9):

kok+1/2
1 —
I E [2”’ 271 )’
def
Unp(e) =4 v e [k+1/2 k+1) (11)
I 271 I 271 I

0, elsewhere .

which are compact functions on the dyadic intervals

def[k (k+1)) nkeZz

D”Vk T 9n? on
We will see in section 5 that for a fixed n the family
of wavelets W, ; are a bases for L,(D,R) functions,
so that each point (Z,7) of RxR might be expressed
by (z,22¥(2"% — k)) for suitable (n, k). Thus each
point of RxR becomes function of two parameters
(n, k), in the functional space whose generator are
{22 W (2"x — k)}, which are an orthonormal basis for

La(D,R).

5. ADAPTIVE SPACES

Let {Vh}, o, be the subset of Ly(D, R) defined as

the set of functions f(z) of compact support on D,

def

V, = {f(a:) € Ly(Dp i, R) : f(2)= const Yz € D, 1,

f(x)=0 VerDn,k}.

Functions f(x) and subsets V}, fulfill the axioms of
multiscale resolution analysis [1,11,12]. According
to them, {®(x — k)}rez is an orthonormal basis in
Vo and, for arbitrary n, adding the complementary
subspace (of wavelet) T, ,we have

Vn+1 - Vn ©® Wn;

where @ is the direct sum of orthogonal subspaces.
As a consequence the space La(D, R) is “reconstruct-
ed” as direct sum of orthogonal subspaces W, of
wavelets

LZ — @nEZWrr

In each
W, = SpankEZ,xER\IjThk(x)

the basis functions are the functions ¥, x(x) (at
fixed n) of (9); for variable n, the all set of func-
tions ¥, () represents an orthonormal basis for
Lo (fig. 1, 2). As a consequence, any Ls-function
f(z), owns a spectral decomposition in Haar wavelets

(fig. 3)

fla) = BR2sw(2"s — k), (12)
nkeZ
where
+o0
gd:ef/f(x)Qz\If@”x—k)dx (13)

C. Cattani, L. Toscano
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When ¥(x) is given, the functional dependence on
the factor 2%, through the parameter n, produces a
scaling of ¥(x) while a non trivial k& translates ¥(x)
either rightward (k> 0), or leftward (k<0). Further-
more ¥(z) is a well localized function in the sense
that

[T () (2)| < Cexp(—alz|) Vo €R,

n<N<oo, a>0.

The bases ¥, () extend to the whole real line, how-
ever if we have a function f(z) defined in a finite do-
main Q of R, we can introduce a function f(x) that
coincides with f(z) in © and has a compact support
in Q, i.e. vanishes out of €2.

We notice that (see [10]):

e for £ >0 there exists a value M < oo such that for
n>0 and k€ Z, there exists a constant « such
that ||\Pn,k($)_a||L2(D,R) <¢;

e for £>0, there exists a value n such that

o k(22D R) <€

In other words, in the numerical approximation of a
function f(x), built on wavelets, there exists a finest
“level” n, fitting f(x).

6. COLLOCATION WAVELET METHOD

Let 2 CR be a finite domain discretized in M sub-

intervals at points
Tj = -~ (j:O,...,M—l),
u(x,t) a one-parameter (¢) function, sampled at the
set of locations {z;}, and the corresponding sampled
values et
€
uj = u(z;,1).

Using a pointwise approximation, and the wavelet
bases (9), we have

u(x,t) = ij(x,t)u}, (14)

where

0, k#7,

at r=uxyg,

(15)
N 2M
af(t)+> > B ()25 W (2" e —k)
n=0 k=0
at z#£zxp.

C. Cattani, L. Toscano

1.4¢
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0.4F

0.2¢

0.2 0.4 0.6 0.8 1

Fig. 3. Haar wavelets representation of a C°-function
(n<3, k<3)

A
A I
'\L

A

N

Fig. 4. Haar representation and the corresponding spline

For a fixed ¢ the wavelet coefficients 5} (t) are given
by Eq. (13), while the first coefficient af(t) is given
by an equation similar to (13) in which ®(z) takes
the place of ¥(2"x — k). Thus the value of u(z,t) in
x#x; (at fixed time t) is determined by the values u}
(supposed to be known) at the nodal points z; and
by the values of the wavelet coefficients o), 3. These
coefficients, at fixed time ¢, might be (alternatively)
easily computed by a FHT, Fast Haar Transform (see
e.g. [1,5,7,10]).

Since we are using the Haar wavelets having con-
stant values, the formal derivatives, with respect to
z, of (14) (according to (15)) trivially vanish. Thus,
in order to get a similar wavelet representation (14) -
(15), for the z-derivatives of u(x,t) we suggest to
“transform” the piecewise function (14) in a non triv-
1ally differentiable function, using splines. To this
end, one has just to pick the middle points [4] of
the subintervals in Eq. (11), and, together with the

boundary points 2y, @, to build up a spline (see



ISSN 1028-7507 Axycruwanun sicank. 2000. Tom 3, N 2. C. 3—-9

Table. 3-order spline corresponding to fig. 4

y = 52.6263 + 96.7111x + 56.9637x2 + 10.8824 23 €[-2,-3/2]
y = 0.273795 — 7.99393z — 12.83972% — 4.62952> €[-3/2,—-3/4)]
y=2. —1.08911z — 3.6332422 — 0.5377532° € [=3/4,0]
y=2. —1.08911x — 3.6332422 + 2.0397723 z €1[0,3/4]
y = 2.07578 — 1.39221x — 3.22912% + 1.860152° | z € [3/4,3/2]
y = 35.9926 — 69.2259x + 41.993422 — 8.18928x3 €[3/2,2]
fig. 4 and the table). alike
By deriving the spline we obtain a function that, dﬁ = F(3,z,1) (17)
according to Eq. (12) can be expressed into a series of dt
Haar wavelets (an alternative numerical algorithm is ~ with initial conditions
reported in [10]). Thus also the derivative du/dx can
B(t)li=0 = Bo,

be expressed by an equation having the same form

of (14)

(16)

3uxt Ei

where the coefficients ¢; have the same form of (15).

7. WAVELET INTERPOLATION

In the one-dimensional problem (QCR,

IQ={xg, x1}) with finite energy Eq. (4) becomes

B(x) Z_% [—da;t(t) +

+> > dM%;t)Q%\IJ(Q% -

n=0 k=0

M
dqi($’t) t
j=0
M
pj(x,t)u} +1f(x,1)
:0

.

having taken into account equations (14)—(16). The
above after some trivial manipulations, based on the
Galerkin method, gives rise to an ordinary first order
differential system in the unknown functions

def

= {ag(t), B (D)},

being B, the wavelets coefficients of the initial func-
tion u(x,0). A further numerical approach such as
Eulero or Runge—Kutta might help to solve differen-
tial system (17).

CONCLUSIONS

The wavelet representation method applied to the
solution of the fundamental equations of magnetohy-
drodynamics which are based on a hyperbolic system
of differential equations is discussed. The explicit nu-
merical method is sketched.
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