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An analytical method of solution of the free vibration problem for composite system of two viscoelastic beams coupled by a
viscoelastic interlayer has been proposed. The phenomenon of free vibration has been described using a homogenous system
of conjugate partial differential equations. After the separation of variables in the differential equations the boundary
problem has been solved and two complex sequences have been obtained: the sequence of frequencies and the sequence
of modes of free vibration. The property of orthogonality of complex modes of free vibration has been demonstrated.
Polyharmonic free vibration has been expanded into the complex Fourier series with respect to complex eigenfunctions.
The coefficients at the eigenfunctions are determined by the initial conditions.

3anpoNoHOBaHO AHANITUYHAN MeTOA POBB’ASKY Bajadl Npo BUILHI KOIUBAHHA CUCTEMH, CKIaJeHOI 3 ABOX B’ ABKO-NIPYKHUX
6alloK, CIIOIY YeHUX B3a AOMOMOL 00 B ABKO-NIPYKHOIO IPOMIXKHOTO Mmapy. BilbHI KOIMBaHHA ONUCYBAIUCH 3 BUKOPUCTAHHAM
OJHOPIAHOL CUCTEMU CHpsXKeHUX AudepeHIINHUX PIBHAHL ¥ YaCTUHHUX HOXiAHuUX. Ilicid posalieHHA SMIHHUX y AudepeH-
UIMHUX PIBHAHHAX OyJO POSB’ABaHO FPAHUYHY 3a/ady 1 OTPUMAHO JABlI KOMINIEKCHI MOCIIAOBHOCTI: MOCIIJOBHICTDL 4acTOT
Ta MOCIAOBHICTL MO/ BUIBHUX KONMBaHb. [IpOAEMOHCTPOBAHO BIACTUBICTH OPTOrOHAILHOCTI KOMINIEKCHUX MOJ BLILHHUX
KonuBaHb. IlomrapMoHIYHI BUIBHI KONMBAHHA POSKIAJallUCh Y KOMIUIEKCH] psaau Pyp’e BIAHOCHO KOMIIIIIEKCHUX BIIACHUX
PYHKIIN, KOePIUIEHTH NPKU AKUX BUSHAYAIOTHCA MOYATKOBUMU YMOBaMU.

Ilpennoxen aHaIUTUYECKUH MeTOJ DeUleHNA Bafadl O CBOGOAHBIX KOIeGaHWUAX CUCTEMBI, COCTOAIEH UG ABYX BASKO-
ynpyrux 6ajok, CBA3AHHBIX NIPU MOMOIIN BABKO-yIPYroro NpoMeXKyTo4YHoro ciod. CBo6oAHbIe KoNeGaHuA GbITN OMUCAHBL
C UCIONB3OBAaHNEM OAHOPOAHON CUCTEMBI CONPSKEHHBIX AnddepeHNNANBHBIX ypaBHEHUN B YacTHBIX NponsBoanbix. Iocme
pasaeleHNa IePpEeMEHHBIX B AuddepeHINaNbHbBIX ypaBHEHNAX Oblia pellleHa paHuvYHad Bajada U MOIMyYeHbl ABe KOMILIEeKC-
HBIE IIOCIEAOBATENBHOCTH: MOCIENOBATENBHOCTD YacTOT U MOCIEAOBATEIBHOCTD MOJ CBOGOAHBIX Kolebanun. IIpogemMon-
CTPUPOBAHO CBONCTBO OPTOrOHAILHOCTH KOMIIIEKCHBIX MOJ CBOGOAHBIX KoleGaHuil. [lonmurapMonundeckue cBOGOAHBIE KOTE-
GaHuUsA PacKIaAblBallich B KOMIIIEKCHBIE pAAbl Pypbe OTHOCUTENBHO KOMILIEKCHBIX COGCTBEHHBIX PYHKINN, KoodPUIINEH T

IIPU KOTOPBIX CIPEACIAKTCA HaYaJlbHBIMU yCIOBUSAMHU.

INTRODUCTION

Strings and systems of beams coupled together by
viscoelastic constraints play an important role in var-
ious engineering and building structures. They are
being used in railway and tram tractions with live
load [1, 2]. Such kind of structures can also be found
in some ski lifts and cable car systems. Beams can
work together with strings, slabs and membranes in
various structures. Light roof structure of the sport
arena is an example of matching of strings and mem-
branes.

Analysis of vibration of complex structural systems
with damping posesses a difficult problem. In the
above mentioned cases, especially where the viscosi-
ty and discrete elements occur, it is recommended to
solve the dynamic problem by representing the ampli-
tudes as the complex functions of real variable [3, 4].
For the first time the property of orthogonality of
the complex modes of free vibration has been demon-
strated in paper [3] for discrete systems with damp-
ing, and in paper [4] for discrete —continuous systems
with damping. With the use of complex functions the
description of free vibration of the beam supported
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on viscoelastic continuous Winkler’s foundation [5, 6]
has been developed in papers [T—10]. In the pa-
per [11] the dynamic problem for complex continuous
system has been solved by classical method [12] ac-
cording to complete theory of non-damped vibration.
In paper [10] the uniform method of solving the free
vibration problems for complex continuous one- and
two-dimensional structures with damping for various
boundary conditions and different initial conditions
has been presented. Verification of this method has
been carried out for the system of two strings in the
case where no damping occurs [11]. The results for
natural frequencies and coefficients of amplitude de-
rived by method presented in paper [10] agree with
the results obtained with classical method [11].

The goal of this paper is to carry out the math-
ematical analysis of solution of the free vibration
problem for composite structure consisting of two
viscoelastic beams coupled by viscoelastic interlay-
er. According to proposed method the solution for
eigenforms of the system is presented through the set
of complex functions. Phase characteristics of the
eigenmodes are studies as the fucntions of their or-
ders.
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1. FORMULATION OF THE PROBLEM

The physical model of the system under consid-
eration consists of two parallel homogenous beams
of equal length coupled together by viscoelastic in-
terlayer (fig. 1). The Bernoulli—Euler’s beams are
simply supported at the ends. We assume that the
beams are made of viscoelastic materials and their
physical properties are described in scope of Voigt—
Kelvin’s model [13—15]. We assume that the vis-
coelastic properties of interlayer also can be described
by the Voigt —Kelvin’s model [13—-15]. As to the elas-
tic properties, the interlayer is considered as classical
one-directional Winkler’s foundation [6].

Stated assumptions allow to express the forces of
interaction between the beams in terms of the deflec-
tions of beams and physical characteristics of Win-
kler’s foundation. The small transverse vibrations of
considered structure are described with the system of
the following conjugate partial differential equations:

8 64101 62w1
Bl (1-1-61%) g1 Tt

0
+ ca(wl — wa) + k(wy — w2) =0,

8 84102
Esly (1 + Cza) 5t T

1
ou
TE

+ c%(wl — wa) + k(wy — w2) =0,
where wy =ws(x,t) and wa=wa(x,t) are the deflec-
tions of the beams (hereafter the subscripts “1” and
“2” mean the beam I and the beam IT respectively);
FEy and E5 are Young’s modules of materials of the
beams; I; and I, are the moments of inertia of cross-
sections of the beams; p; and po are the masses of
the beams per unit of length; ¢; and ¢ are relative
coefficients of viscosity in the beams; ¢ is the coeffi-

A
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Fig. 1. Dynamic model of the system of two viscoelastic
beams coupled by viscoelastic interlayer

cient of viscosity of the interlayer; & 1s the coefficient
of elasticity of the interlayer; [ is the length of the
beams.

2. SEPARATION OF VARIABLES

The goal of this paper is to describe the free vibra-
tion of complex visco-elastic system. The process of
vibration is not harmonical one because of damping
existing in the system. However, in scope of the con-
sidered model it is possible to express the time evolu-
tion of the system introducing the notion of complex
frequency v. This approach allows to assume the de-
sired deflections to be the harmonical functions of
time.

Substituting the expression

wy = Wi (x) exp(ivt),

(2)

wy = Wa(x) exp(ivt),

for w; and wsy in the system of differential equa-
tions (1) we obtain the homogenous system of con-
jugate ordinary differential equations describing the
complex modes of vibration of the beams:

d*Wy

drh — [E1[1(1—|—611/)]_1X

X [(ulyz—k—icy)Wl—l—(k—l—icy)Wz] =0,
4 @
d*Ws

dat — I:EZIZ(I—i—CZV):I_lX

X [(uzyz—k—icy)Wz—l—(k—l—icy)Wl] =0,

where W1 (), Wa(x) is the complex mode of vibration
of the beams; v is the complex frequency of vibration
of the beams; ¢ is the time.

3. SOLUTION OF THE BOUNDARY VALUE
PROBLEM

Searching for particular solution of system of dif-
ferential equations (3) in the following form [16]:

Wi =A™, Wy = Be'", (4)

we obtain the homogenous system of linear algebraic
equations

A[Rl(l +icw)rt — pr? + k + icy] —
—B[k + icy] =0,
A[k + icy] —
—B[Rz(l +icov)rt — pov? + k + icy] =0,
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where R1=F11;, Ro=FE>I5. This system has a non-
trivial solution only if its determinant is equal to zero.
This condition is in essence the dispertion equation
linking the wavenumber r and the complex frequency
v. In doing so, we obtain the four-quadratic equation

2 .
pov® —k —icv]|

Ra(1 +icav)

s vl —k —icv

Ri(1+icv)

(6)
2 1p2v? — (p1 + po) (k + dcv)
RiR2(1 4 iciv)(1 + icav)

with the following roots:

+v =0,

Ty = :I:i/\v, Ty = :I:/\v,
. (7)
Jj=1234 v=12,
where
1[pvi—k—icv pov?—k—icv
Ao=1{]= +VvA, (8
\/2 |: R1(1—|—icllj) + R2(1+i62y) \/_’ ( )
and

A vl —k —icv _uzyz—k—icy ’
L Ri(1 +dew) Ra(1 + icav)
4(k +icv)?
( .—|— icv) . >0,
RiR2(1 4 iciv)(1 + icav)

)

_|_

is the discriminate of the four-quadratic equation (6).

After applying the Euler’s formulas the general so-
lution of the system of differential equations (3) can
be represented through the fundamental system of
solutions:

2
Wi(x) =Y A;ShAz+ A;*ChA,z+

v=1

+ A sin Ayx + AJF* cos Ay,

2
Wa(x) = By Shd,x + B;"Ch X+
v=1
+ B sin Adyx + B cos Ay,
where A3, A5, AT, AT BrL B BT, B
are constants.

In agreement with (5) there exist the following re-
lations between the constants from (10):

* *% * %% EEE T
_ Bv _ Bv _ Bv _ Bv

P -
where
Ri(1 4 ic1vy) A — v + k + icv,
Ay = - =
k+icy,
(12)
k+icy,

Ro(1 4 dcovy)Ad — pav2 + k + icvy
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After incorporating the representation (11) in (10)
the general solution of the system of differential equa-
tions (3) takes the form

2
Wi(x) =Y A7 ShA,x+ A;"Chh,z+
v=1
+ A sin Ayxz + A cos Az,
(13)

Wa(w) = ay (A7 Sh Az + A;"Ch A, u+

v=1

+ AT sin Adyx + AS " cos Ay ).

To determine the amplitudes of the eigenmodes of
the system one should specify some kind of boundary
conditions. In this scope we assume the ends of the
beams to be simply supported:

Wi(0) =0, wy(l) =0,
14)
d*W, d*W, (
dx? (0)=0, dx? (=0
for beam I and
W1 (0) =0, Wa(l) =0,
15)
d>Ws d>Ws (
= ) =
dx? (0)=0, dx? (=0

for beam II. Substituting the general solution (13)
into boundary conditions (14), (15) we obtain the ho-
mogenous system of linear algebraic equations, which
in the matrix notation has the following form:

YX =0, (16)
where
X = [AL, AT AT AT AL AT AL AT
is the vector of the amplitude coefficients and
Y = [Yij]s;xs (17)

i1s the characteristic matrix of the system of equa-
tions (16). The elements of this matrix are presented
in table 1, where

SS1 = ShAl, 5SSy = ShAsl,
CCy = ChAll, CCy= ChAsl,
s$s1 = sin Apl, ss9 = sin Asl,
cep = cos Arl,  ces = cos Asl,

I =X2, 1, =M.
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Table 1. Matrix of coefficients Y;;

7 1 2 3 4 5 6 7 8
J
1 0 0 1 1 0 0 1 1
2 0 0 L s 0 0 =l =l
3 0 0 aj as 0 0 aj as
4 0 0 01”1 02”2 0 0 —a1111 —02”2
5 SS1 S5 cCy CCy 881 589 ceq ceo
6 ”1551 ”2552 ”1001 ”2002 —”1551 —”2552 —”1661 —”2662
7 1551 255> a1 C'CH asC'Cy 1881 9589 ajceq asceo
8 01”1551 02”2552 01”1001 02”2002 —01”1551 —02”2552 —01”1661 —02”2662
The condition of solvability for the system of equa- following equation with respect to frequency:
tions (16) is the vanishing of the characteristic deter-
minant, i.e. V4—(u1u2)_1{ic(u1+u2)v3+
detY = 0. (18)
obtained from the system (16) leads to the reduction
of the characteristic equations (18) to the following + (R2(1+i62y)/\ﬁ+k)ﬂl] vi—
form: (25)

sin Ayl sin Aol
aysin Ayl assin Asl =0, (19)
where
AL =y +if,
. (20)
Az = a9 + 262

are in the general case the complex numbers.
Vanishing of the determinant in (19) is equivalent
to the following transcential equation:

sin(ag + i61){ sin(as + i52)] = 0, (21)
having the roots
sT
Nlp = Qap = Oy = Ta
Bln = 6271 = ﬁn = 0; (22)
s=1,2,3,...,
where
n = 25—6717(25_1), (23)

and 6, (25_1) is the Kronecker’s number.
Substitution of (22) in (20) leads to the equality
(24)

ST
AlrL:AZTL:/\n:Ofn:_~

{

Substituting r*=A%* in the equation (6) and carry-
ing out all the transformations we readily obtain the

—ie(Ri(14ic1v)+ Ra(14icav)) At v+
_ [(Rle(l—i—iclV)(l—l—iczy))/\fl—l—
+ ]C(Rl(1—|—i611/)—|—R2(1—|—i621/)):| /\i} =0,

from which the sequence of complex eigenfrequencies
can be determined:

(26)

Vp = iy T wp.

In fact the equation (25) has four roots. In (26) we
left only two of them that correspond to physically
consistent vibration of the system decaying with time.

Using the representation (26) in the expression for
ay (12) we obtain the final formulas for coefficients
of amplitudes that are in fact the relative ratios of
amplitudes of the two beams vibrating on the certain
mode:

_ Ri(14 i1V )AL — w2 + k +idcvy
k+icy,

an
27
k+icy, (27)

Ro(1 +dcovn) A — pov2 + k + dcvy,

Incorporation of the sequences of A, and a, into (13)
gives two sequences of modes of free vibration for
beams [ and I[:

Wi (2) = sin Ay x,
(28)

Wap (2) = ap sin Ay 2.

K. Cabanska-Placzkiewicz
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4. SOLUTION OF THE INITIAL VALUE PROB-
LEM

The complex equation of motion

T = ®exp(ivt), (29)
in the case of v=v,, can be written as
T, = @, exp(ivpt), (30)

where ®,, 1s the Fourler coeflicient.

It is natural to present the free vibration of beams
in form of the Fourier series based on complex eigen-
functions, i.e.

wip(z,t) Y, exp(ivpt),

Z Wln
Z W2n

When omitting the damping in the beams, from the
system (3) after performing the algebraic transfor-
mations of its equations, adding them together and

(31)

wan(z,1) Y, exp(ivpt).

integration of the final expression in limits from 0 to {
we obtain the property of orthogonality of eigenfunc-
tions [8—10].

{

/{€1 (Wim Vin+Win Vim )+
0

€ (WZmV2n+W2nV2m)+ (32)
+277[(W1n _WZn)(WIn _WZm)] }d$ = Nnémna
where 6,,,,, 18 Kronecker’s delta,
1
= 2/[€1W1nvln + EoWay Von+ (33)
0
+77(W1n - WZn)Z]dxa
Vin(2) =ivyWin(2), Van(x) =iv, Way, (),
Vlm(x):iymwlm($)a VZm(x):iVmWZm($)a (34)

Ei=m/p, Ea=pa/p, n=p1/(2u).

The problem on free vibration of beams is solved by
applying the following conditions:
w1(l‘,0) = Wo1, wl(l‘,o) = o1,
(35)

wz(l‘,O):woz, wz(l‘,O):woz.

K. Cabanska-Placzkiewicz

Application of conditions (35) in the series (31) and
taking into consideration the property of orthogonal-
ity (32) leads to the formula for the Fourier coeffi-
cient [8—10]:

!
&, = /{&1 (Vipwor + Wiptor )+

== \

0
+&2(Vanwos + Wantho)+
F (Wi W) — )] i

After the substitution of (28), (30) and (36) into (31)
and obvious transformations finally one can obtain
the expressions for free vibration of beams:

Win :Z e @y, | Wiy () [cos(wnt+pn )+

n=1
+ isin(wnt—l—gon)] ,

- (37)
wan =) €@y Wan(2) [cos(wnt+pn )+

+ isin(wnt—l—gon)] ,

where ¢, =arg ®,.

5. NUMERICAL RESULTS AND DISCUSSION

Two beams coupled by viscoelastic interlayer
have been considered. Calculations have been car-
ried out for the following data: E;=1010 Nm™2,
E,=1010 Nm™?, L =45-107* m* L=
=89-107* m?* 1 =12-102 kgm™?!, =
=1.75-10> kgm™', k=2-10° Nm~?, [=10 m,
¢=0.75, ¢4 =0, ¢2=0. From teh above values it is
easy to see that in calculations both the beams were
regarded as elastic with no internal damping.

The Fourier coefficients ®, (36) were derived for
the following initial conditions:

woy = Agsin(ma/l), o = Aswy sin(2wa/l),

Wpa2 = 0, woz = 0, As =0.01L.

For the system of two beams coupled by viscoelas-
tic interlayer the calculations were performed in the
program “MATHEMATICA” [17, 18]. The viscoelas-
tic Bernoulli— Euler’s beams coupled together by vis-
coelastic material can be assumed to be the thin
beams, so that there don’t occur the angles of ro-
tation of cross-sections of the beams. As to the vis-
coelastic one-directional Winkler’s interlayer, it was
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Table 2. Natural frequencies and ratios of amplitudes
for lower modes of vibrations of the system

Number of mode Vn ap
s=1 n=1 21.0245 4 0.000002.847217 | 0.953953 + 0.00000355862¢
n=2 56.8328 4+ 0.00526501¢ —1.391128 — 0.0000140292:
s=2 n=3 81.93308 + 0.000635179¢ 0.479134 + 0.00009758241
n=4 99.4811 4 0.004632687 —0.698737 — 0.0001727914
s=3 n=>5 176.268 + 0.002429434 0.110562 + 0.00007404597
n==06 203.96 + 0.002838434 —0.161222 — 0.0001233237
Re w,, Re w,,
1 0
08r
06
0.4} Ty
02+
0 : : : : 1.4 : : : :
0 0.2 04 06 0.8 1 0 02 04 06 0.8 1
x/l1 x/1
Im w,, Im w,,
44107 0
10706 |
3+10 5010 |
24107 |
141008 A0
0 ' ' ' ' -1.5¢107% ' ' ' '
0 0.2 04 06 0.8 1 0 02 04 06 0.8 1
x/l1 x/1
a b

Fig. 2. Modesvilfration of beam

a-n=1;

considered as one of snthlic
gitudinal interaction between the interlayer and the
Bernoulli— Euler’s beam don’t occur. Table 2 con-
tains the complex natural frequencies v, and com-
plex coefficients of modedisfe vibration a, for the
system with dampingesile are giv en for s=1,
(n=1,2), s=2, (n=3,4), s=3, (n=5,6).

Investigation of complex fooHeams Tand I7
has shown that relative amplitude of vibration of
beam IT (normalized to that of beam I) decreases
with the increase of s and number of mode n, re-
specively. So, if at s=1 (n=1,2) the amplitudes of
vibrations of the both beams are of the same order,
with the increase s to 3 (n =5, 6) their ratio decreases
to 10-15%.

The another peculiarity is some phase shift be-
tween the modes with corresponding numbers for

kness, in which the lon-

II for s=1, (n=1,2):
b-n=2

beams [ and /1. Obviously, this phenomenon is con-
ditioned by presence of viscousity in the elements of
considered structure. This relative phase shift can
be expressed by the existence of nonzero imaginary
parts of spatial modes of beam I while for all modes
of beam [ the imaginary paazh be regarded as iden-
tical to zero. Eigenmodes for the both beams with
s=1,2,3 are represented on fig. 2-fig. 4.

Presence of the above-mentioned phase shift be-
tween the deflections of the beams is natural for
visco-elastic systems, and its the value stronly de-
pends on the material parameters of components of
system. The analysis shows that for lower modes
of vibration this shift of phases is extremely low,
but demonstrating the trend to growth: for n=1
max |Tm ws,, /Re wa,| is less then 5 -107* % and for

n==6 it grows to 0.077 %.

K. Cabanska-Placzkiewicz
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0 02 04 06 038 1

0.2 0.4 0.6 0.8 1
x/1 x/1

Fig. 3. Modesrdfration of beam I for s=2, (n=3,4):

a-n=3;, b-n=4

Re w,,

0.12 0.18
0.08
0.04 0.09

0 0
-0.04
-0.08 -0.09
-0.12 -0.18

0 0

x/1

1+107% 1.5+10°%
1+10°% |
5+107%° |

54107
-1+107% |
-1+107% : : : : -1.5+107% : : : :

0 02 04 06 08 1 0 02 04 06 08 1

x/1 x/1

Fig. 4. Modesrdiration of beam I1 for s=3, (n=5,6):

a-n=5 b-n=6

Also, it should be noted that amplitude ratios of but modes having even numbers are counterphase

modes for bdtdnsignifican tly decrease with the ones.
increase of s. It is interesting that modes for beams 7 To substantiate the reliability and marketability of
and I1 with odd numbers are excited almosphase, the offered method of the solution the verification

K. Cabanska-Placzkiewicz 9



ISSN 1028-7507 Axycrwanmi Bicank. 1999. Tom 2, N 1. C. 3-10

of numerical results for the system of two Bernoulli—
Euler’s beams without damping has been carried out.
The results for natural frequencies and ratios of am-
plitudes derived by means of the presented method,
have been compared with the results obtained using
the classical method [11]. The reasonable agreement
betwen both mentioned results has been noted.

For the solution of the problem with damping the
new analytical uniform method presented in this pa-
per may be used. The basis of this method is the
property of orthogonality of the complex modes of
free vibration of two Bernoulli—Euler’s beams cou-
pled together by viscoelastic interlayer (32). This
property is identical to that of system of two strings
coupled by viscoelastic interlayer [10].

CONCLUSIONS

1. The analytical method of the solution of prob-
lems on free vibration of continuous system of
two viscoelastic beams coupled by viscoelastic
interlayer is introduced in this paper. According
to this method the set of complex modes of free
vibration forms has been found. Mentioned set
can be regarded as functional basis for represen-
tation of arbitrary vibration of the system.

2. The calculations for presented system have been
carried out for two complex sequences: the se-
quence of frequency, and the sequence of modes
of free vibration.

3. Spatial modes of vibration of beams I and I7
are slightly shifted in phase. With the increase
of number of mode n it is oserved the decrease of
relative amplitude of vibration of beam I1 with
respect of that of beam I. The absolute values
of amplitude ratios for both beams are also de-
creasing with the increase of n.

4. The method presented in this paper can be ap-
plied to solutions of free vibration of different en-
gineering structures consisting of two viscoelastic
beams coupled by viscoelastic interlayer (girder,
road or railway bridges).
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