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An acoustic model of a larger human blood vessel is developed in order to study the properties of an acoustic field produced
by a stenotic narrowing in vessel. This model accounts of the basic features of the generation and propagation of noise
in the human chest from the source (turbulent pressure fluctuations in blood flow) to a receiver resting on the skin. The
low Mach number turbulent wall pressure models of Corcos, Chase, Ffowcs Williams and Smol’yakov — Tkachenko are
used to describe random noise sources in the vessel. The relationships obtained permit one to analyse the dependence
of the acoustic field in the thorax on the parameters of the blood flow and the vessel, and give the possibility of finding
characteristic signs of the presence of a stenotic narrowing in vessel.

INTRODUCTION

The diagnosis of stenotic obstructions of vessels
is of a great concern to the medical clinician. The
most common method for obtaining information on
a stenosis 1s through the use of arteriograms. This
is, however, an invasive technique which is often ex-
pensive, uncomfortable for the patient, involves risk
of infection and bleeding, and it is usually only used
when the disease is rather advanced and accompa-
nied by other symptoms. Of particular value there-
fore are alternative diagnostic procedures which are
non-invasive. Since a stenosis creates a number of
abnormal flow conditions in the vessel, several non-
invasive techniques based on these abnormalities have
been suggested in the last few decades [1-38].

One such technique is called the method of
phonoangiography. It was initially proposed by Lees
and Dewey [8] and has subsequently been studied and
applied extensively by many researchers [9—20]. This
method uses the pressure field induced in vessels and
perceived at the skin surface as sound. The mean sta-
tistical characteristics of the sound field can then be
found and analysed in order to obtain the information
about stenosis (such as the presence, location, shape,
characteristic dimensions, etc.). However, quantita-
tive diagnosis of a stenosis is only possible if the fun-
damental mechanisms of vascular sound generation
and transmission are known. There is a number of
studies [8—-12,19-22], which suggest that the most
probable sources of blood motion sound are turbulent
pressure fluctuations in the flow.

At present several low Mach number models of the
pressure fluctuations are available. They can be used
in constructing an acoustic model of a lager human
blood vessel. Such a model must correctly describe
the rheological properties of blood and the nature of
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the flow in the vessel, the physical and geometrical
characteristics of the vessel, the stenotic obstruction,
the structure and acoustical properties of the human
body tissue, etc. As a result, it will correctly de-
scribe the generation and transmission of noise from
the source to the receiver resting on the skin which
is necessary for solving the inverse problem (viz. lo-
cating pathology by changes in the characteristics of
noise field picked up from the chest surface of a given
patient).

Analysis of the scientific literature shows that the
creation of an acoustic model of a separate vessel 1s
still far from complete. To the author’s knowledge,
at present only a few works [17,22—25] can be re-
ported in which the simplest models are introduced.
Some of them are the models of a larger airway of
the human respiratory system [17,23—25] (neverthe-
less, these models can be easily adapted to the case of
a larger blood vessel for the corresponding parame-
ter values). Although undoubtadly important, these
works have, however, some disadvantages. Namely,
in the model suggested by Wodicka et al. [23,24] the
source of sound is represented by a determined load-
ing at the inner surface of an infinite circular pipe,
and the body is introduced as an infinite homoge-
neous medium of known density, sound speed and
damping coefficient. Such an approach does not take
into account neither the finiteness of the human body
volume nor the random statistical nature of loading.

A few years later Vovk et al. [17] have outlined a
simple qualitative model which looked much similar

to that developed by Wodicka et al. [23,24].

In the more recent paper by Vovk et al. [25] two
finite coaxial circular cylinders with random turbu-
lent pressures at the surface of the inner cylinder
were considered. This is more realistic approach com-
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Fig. 1. Acoustic model of a larger human blood vessel

pared with the previous ones. However, here the au-
thors have not considered the presence of a stenot-
ic constriction in the vessel. In addition, they have
used the Corcos model [26] for turbulent wall pres-
sure fluctuations, the disadvantages of which are well
known [27,28].

Wong et al. [22] have been likely the first who made
the attempt to describe a vascular stenosis. Their
model consisted of two finite, joined in series, isolat-
ed elastic cylinders excited by inner random turbu-
lent forces. One cylinder simulated an arterial steno-
sis, and the other was a poststenotic segment of an
artery. In general, such approach looks interesting.
However, to be used in practice, 1t requires some clar-
ifications and completions to be made. Namely, the
boundary conditions for the cylinders and the tur-
bulent wall pressure field, as well as the influence of
the body tissue on a sound field have to be discribed
more adequately.

This paper presents an acoustic model of a larger
human blood vessel. This model takes account of all
the above mentioned basic features of the generation
and transmission of noise in the human chest from
the source to the receiver, and permits consideration
of a stenotic narrowing in the vessel. The formulation
of the model and the corresponding assumptions with
respect to the ranges of its applicability are given in
Section 2. Section 3 briefly describes the incompress-
ible turbulent wall pressure models which are used
in the study. The analytical solution for the noise

field in the thorax is constructed and qualitatively
analysed in Section 4. The numerical analysis of the
noise field and its dependence on the parameters of
the vessel and the blood flow is carried out in Section
5. Finally, the conclusions of the investigation are
summarized in Section 6.

1. ACOUSTIC MODEL

The nature and character of the blood loading in
vessels, as well as the geometry and the physical
properties of the blood vessels and surrounding body
tissue are extremely complicated. This is the rea-
son for the absence of satisfactory information about
them. Under these circumstances precise modelling
of the vascular sound generation and transmission is
extremely difficult, and at present the question can
be only about making approximate gradual steps to
constructing an acoustic model of a larger blod ves-
sel. They must be based on the generally accepted
assumptions and available data [1, 2, 17, 22— 25].

Taking this into account we restrict ourselves to
consideration of the axisymmetric, quasy-steady, ful-
ly developed turbulent flow in the vessel, two-phase
acoustic medium as the body tissue and the cylin-
drical shape for the human chest. These allow us to
formulate the acoustic model of a larger blood ves-
sel. The geometry of the model is shown in fig. 1.
Here the human thorax is represented by a finite cir-
cular cylinder, of height H and radius R, filled with
an acoustic medium of density py and sound speed
co and surrounded by air. The vessel is simulated by
a finite coaxial circular pipe, of the same height H
and radius @ (a<< R). The turbulent blood flow in
the pipe is characterised by mean velocity U deter-
minable as the ratio of the flow rate, averaged over a
cardiac cycle, to the cross-sectional area of the ves-
sel. Blood has density p and sound speed ¢. Turbu-
lent pressure fluctuations at the inner surface of the
vessel (r=a) radiate sound waves that can be detect-
ed at the body surface (r=R) by a special detector.
The mean statistical characteristics of these sounds
can then be determined and analysed in order to di-
agnose the vessel condition.

The corresponding axisymmetric mathematical
problem is governed by the two-dimensional wave
equation in the radial, r, and axial, z, coordinates

1 821)0
2 _
V(m)po - % oz

(1)
and the following boundary conditions

p0|7‘:a = P, p0|7‘:R == 0; p0|z::|:H/2 =0. (2)
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Here py(r, z,t) and p;(z,t) are the acoustic and
bulent pressures, respectively, and the origin of
cylindrical coordinate system is taken in the ce
of the cylinders. The random turbulent pressure
pt(z,t) is assumed to be temporally stationary
spatially homogeneous.

The last two conditions in (2) are due to
the wave resistance of the body tissue 1s n
higher than that of air (i.e., poeoa9000 kg/
(p¢)air 2420 kg/m?s).

In generating noise by constricted vessel, many
tors play significant role [29, 30]. These are the st
sis geometry and the vessel geometry, velocity and
waveform of the flow, viscosity and density of the flu-
id, etc. The most important of these are the ratio
of the minimum cross sectional area, A, to the unob-
structed lumen area, Ag, of the vessel (or the stenosis
severity, (1—A/Ay) x100%) and the mean flow veloc-
ity. The above formulated model permits considera-
tion of a simple stenotic narrowing which is charac-
terized by the ratio A/Ag, viz.

intact vessel a = aop,

(3)

narrowed vessel a = yag,

(2 =A/Ap, 0<y<1), and, via the mass conservation
condition in the narrowed and intact arteries, viz.

uA = UAQ, (4)

takes into account the corresponding changes in the
mean flow velocity in the constriction, viz.

u=U(Ag/A) = U/~ (5)

The arterial narrowing (3) causes not only the in-
crease in the blood flow energy (i.e. from Eq~U? in
the normal artery to E'~u? in the diseased artery)
but also redistribution of the turbulence energy on
the flow scales (i.e. from eddies of dimensions of
order D/2 convecting at speeds U and U, in the in-
tact pipe to eddies of dimensions of order d/2 con-
vecting at speeds u=U/y? and u.=U./v? in the ob-
structed pipe). These changes in the sound source
structure will cause both the increase in the radiated
acoustic power levels and the appearance of the new
frequency components in the sound field characteris-
tics which are reported in periodicals. Consequently,
these sound field variations can be used as the indi-
cators of changes in the vessel state.

2. TURBULENT WALL PRESSURE MODELS

Much work has been made in the past to de-
scribe pressure fluctuations beneath an incompress-
ible turbulent boundary layer [27,31]. However, at
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Fig. 2. Wavenumber-frequency spectrum ®,(k,w) of tur-
bulent wall pressure with w=const

the present time only several empirical and semiem-
pirical models for the wavenumber-frequency spec-
trum of turbulent wall pressure are available [26,
32-34] which are more or less acceptable for prac-
tice [27]. The first of these was proposed by Cor-
cos [26]. Following his ideas, the cross-spectrum
Sp(€,w) of astatistically stationary and homogeneous
one-dimensional wall pressure field, p;(z, 1), at two ar-
bitrary space-time points (z,t) and (z + £, ¢+ 7) can
be written as

Sp(€,w) = P(w) A(wE/Ue)e™ 8T, (6)
where P(w) and A(w&/U,) are the power (or frequen-
cy) spectrum and normalized to unity cross-spectrum
(i.e. A(0)=1) of pressure fluctuations, respective-
ly. In practice [26,27,31], A(wé/U.,) is frequently ap-
proximated by exponential decay function,

Sp(&,w) = P(w)ePlwé/Uelg=iwt/Ue

(7)

in which 3 is a parameter chosen to yield the best
agreement with experiment. Substituting formula (7)
into expression relating cross-spectrum, Sy (&, w), to
wavenumber-frequency spectrum, @, (k,w), i.e.

By (k) = (1/27) [ S,( w0 s, (9

yields the Corcos model for ®,(k,w):

p

O, (k,w) = P(w)ﬂ'[(kUc/w s

)

Function (9) describes quite well the structure of
the wavenumber-frequency spectrum of the wall pres-
sure only in the range of the convective wavenum-
ber, k~sk.=w/U,, where ®,(k,w) is sharply peaked,
owing to the convective nature of the turbulence
(see fig. 2). Consequently, when the total noise field
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generated by turbulence is dominated by the convec-
tive wall pressure components, then the Corcos model
gives satisfactory predictions of noise. However, when
the subconvective wall pressure components, k < k.,
dominate, then the Corcos model highly overpredicts
the actually generated noise levels. This 1s because
the spectral levels at wavenumbers below the convec-
tive peak in spectrum (9) are 25 — 35 dB higher than
the available experimental data [27,28,31]. The oth-
er disadvantage of expression (9) is that it violates
the k% dependence of the low-wavenumber spectrum
as k approaches zero [27].

More recent models by Chase [32], Ffowcs
Williams [33] and Smol’yakov—Tkachenko [34] have
been designed to describe the subconvective region
more accurately. The various approaches have been
used herewith. In contrast to the purely empirical
Corcos model, which has been constructed proceed
from examination of published experimental data,
the semiempirical Chase model [32] was based on con-
sideration of contributions of mean shear and pure
turbulence to the spectrum of the wall pressure. His
model, adapted to the case of one-dimensional flow,
is

O, (k,w) = p203[eark? K5 + erk? K37,

K2 = (0= Uck)?/(hive)? + k2 + (b:8)~2,  (10)

i=M,T,

With the dimensionless coefficients hy~hp a3,
er =0.0474, cpr=0.0745, by =0.378 and by =0.756,
recommended by Chase, expression (10) can predict
a convective pressure level which agrees well with the
experimentally measured, and it displays the &2 de-
pendence in the low-wavenumber domain.

Ffowcs Williams [33] started from Lighthill’s acous-
tic analogy and assumed that the velocity source
terms were of the general Corcos form. His final ex-
pression for the wavenumber-frequency spectrum has
the k? dependence in the low-wavenumber range and
accounts of the effects of compressibility. However,
it contains a number of unknown constants and func-
tions to be determined experimentally. To date, these
remain unknown, but Hwang & Geib [35] have pro-
posed a simplified version, which neglects the effects
of compressibility and assumes a specific form for the
remaining functions. The one-dimensional version of
their expression, slightly adjusted to agree with the
Corcos parameters, is

B
7[(kU.Jw—1)% 4 52]’ (11)

Smol’yakov and Tkachenko [34] fitted exponen-

<I>p(/c,(.u):P((.a)[/cUc/w]2

tial curves to their measured cross-spectral densities.
However, in contrast to Corcos, who directly mul-
tiplied his pure longitudinal and pure lateral cross-
spectra, they took the compbined cross-spectrum to
be of more sophisticated form, and Fourier trans-
formed their expression. The one-dimensional version
of their wavenumber-frequency spectrum is

D, (k,w) = 0.025P(w) A(w)h(w) (U, /w)?x
X[F(k,w) — AF (k,w)],

Alw) = 0.124[1 — 0.2/w* + (0.2/w*)?]/2,
w* =wb* /U,
Fk,w)=[A% + (1 = Uk /w)?] 7372,

(12)
AF(k,w)=0.995 [AZ + 1+ (1.005/m1) x
—3/2
x[(my — Uek/w)? — m%]] ,
my = (A% 4 1)/(1.025 4+ A?),
h(w)=[1—0.153A(A? 4+ 1)/((1.025 + A?)x
x(0.02 4+ A%))1/2]=1,

Although Smol’yakov and Tkachenko gave arguments
and reported experimental results supporting their
model, expression (12) violates the k% behaviour of
the spectrum @, (k,w) at low wavenumbers.

3. ANALYSIS OF THE SOUND FIELD IN THE
THORAX

The solution to the formulated boundary prob-
lem (1), (2) is obtained by taking the Fourier trans-
form, defined here with the convention

H/2 o

—H/2 -0

g(k,w) =

and expanding the acoustic pressure py(r, z,w) into
an infinite series of trigonometric functions and cylin-
drical Bessel functions of zero order, viz.

oQ

po(r, z,w) = Z (cos(ﬁ,(f)z) X
n=1
X [A%l)Jo(agll)r) + Br(Ll)Yo(agll)r)]—l—
—|—sin(ﬁr(12)z)><

X [A&Z)Jo(aﬁf)r) + B,(LZ)YO(aﬁf)r)]) ,
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where the axial wavenumbers 67(11), 67(12) and radial
(1 (2

wavenumbers oy, ’, ooy
expressions

are given by the following

57(11) =(2n—-1)m/H, aﬁf):
67(12):27171'/}[,

In  relationship  (14), the acoustic modes
\Ilgll)(z) :cos(ﬁr(f)z) and \Ilglz)(z) :sin(ﬁr(f)z) of the
chest volume describe the symmetric and anti-
symmetric parts of the random sound field po(r, z,w),
respectively (with respect to the plane z=0), and the
Bessel functions Jo(...) and Yy(...) describe the ra-
dial distribution of the field.
In the form taken, solution (14) satisfies the two-
dimensional Helmholtz equation
V(zryz)po(r,z,w) —|—k§p0(r,z,w) =0, (16)
with acoustic wavenumber kg=w/cy in the body tis-
sue, and the boundary conditions (2) on the upper
side, z=H/2, and lower side, z=—H /2, of the outer
cylinder. The unknown amplitudes Aﬁf) and Br(Lj)
be obtained from the conditions (2) at the surfaces
of the inner and outer pipes by the use of the or-

can

thogonality properties of the acoustic modes \I!%)(z)
(j=1,2), viz.

a2 0, for m=n
| e s =
_fr/o 0, for m # n,
H/2 ' H/2, for m=n
| vewa: =

_fr/o 0, for m # n.

After finding the coefficients Aﬁf) and BT(Lj), the
final expression for the random acoustic pressure
po(r, z,w) takes the form

oQ

po(r.z,w) = 3 [cos(5() ) x

n=1

X(G(ag),r, R)/G(ozgll),r: a,R))pEi)(w)—l— (17)

—|—sin(ﬁr(12)z)><
X (G(aﬁf), 7, R)/G(ozglz), r=a, R))Pgi) (@)]-

Here the term that defines the degree of excitation of
()

the acoustic mode ¥’ (z) by the random turbulent

pressure py 1s given by the expression

H/2
Pgi)(“)ZE / pe(n,w) ¥ (n)dy, (5 =1,2),
_H/2

and

Ga¥) r, R) = Yo(af R) Jo (ol 'r)—

—Jo(aY R)Yy (a{r)

i1s a combination of the Bessel functions.

Since in the framework of the model under con-
sideration the acoustic pressure vanishes at the chest
surface, the basic parameter of the noise field record-
ed from patients is the radial acceleration [17,25],
viz.

wy(r, z,w) = —(1/po)dpo(r, z,w)/0r =

oQ

= (1/po) Z[cos(ﬁﬁll)z)agll)x

n=1
< (F(aD,r, R)/Glot) r=a, R)p(w)+ 1P

+ sin(ﬁr(f)z)a%z) X

x (F(aﬁf), r, R)/G(Ozglz), r=a, R))Pgi)(“)]a

where the function F(ag), r, R) is, like G(ag), r, R),
written in terms of cylindrical Bessel functions, viz.

F(alf) v, R) = Yo(all R) 1 (o] 7)—

—Jo(a R (a)r), j=1,2.

The spectral density Py (7, z,w) of the random field
wy (7, z,w) at the measurement point (r, z) can be ob-
tained from the relationship of statistical orthogonal-

ity [31], i.e.

i

Py(r,z,w)b(w—w ) = (wr(r, z,w) wr(r,z,wl)% (19)

in which the brackets denote an ensemble average,
8(...) is the Dirac delta function, and the asterisk
denotes a complex conjugate. When the radial accel-
eration (18) is substituted into expression (19), and
the required operations are performed, the spectral
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density becomes

Py(r, z,w) =

= (2/poH)’

(20)

x(|F (a7, R>|2/|G<a£3>,r:a,R>|2><béi><w>+
—|—sin2(ﬁr(12)z)|a£12)|2><

x(|F (), m, R) 2/ 1G (oY, r=a, R)|?)®5 ()],

where <I>1(,]n) (w) (j=1,2) are the modal excitation
terms, defined in terms of the wavenumber-frequency
spectrum of the turbulent wall pressure, ®,(k,w),
and the shape functions of the thorax volume

1S5 (k)2 = 4(85))2 cos? (kH /2) /[k? — (85)2)?,

IS5 (k)2 = 4(857)2 sin® (kH /2) [Tk — (B57)2)2
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Fig. 3. Spectra of the thorax surface radial acceleration
at point (r=R, z=0) produced by turbulence in a nor-
mal (solid lines, Req, =3500) and narrowed (dashed lines,
7=0.7; S=(1—+%)x100%=>51%; Reya,=5000) vessels
at the flow velocity U=0.7 m/s, as calculated for the
Corcos (curves 1 and 2), Ffowcs Williams (curves 3
and 4), Smol’yakov-Tkachenko (curves 5 and 6), and
Chase (curves 7 and 8) models

as

)20, (k,w)dk.  (21)

o= Jise

Thus, the spectral density, Py(r, z,w), of a radi-
al acceleration at the measurement point (r, z) is a
sum of individual mode contributions, (Py (7, z,w)),.
The modal spectral densities are determined by
the two factors. Firstly, this is the degree of ex-
citation of the acoustic mode, \I!%])(z), which 1is

represented by the modal excitation term <I>1(,]n) (w).
This term depends on the amplitudes of the wall
pressure components and their spatial correlations
with the mode \I!( )( ). Secondly, this is the term
(O ()7 a2 P (o) v R)P/1G 0l r=a, R))?
which is in fact the transfer function of the thorax.
It contains the geometrical characteristics of the ves-
sel and thorax, and the acoustical properties of the
body volume (such as cut-off frequencies, acoustic
resonances), and describes propagation of the sound
waves from the source to the receiver.

All information with respect to the flow in the ves-
sel is contained in the wavenumber-frequency spec-
trum, ®,(k,w), of the turbulent wall pressure, and
hence, via formulas (20) and (21), in the spectrum
Py (r,z,w). Any changes in the flow structure will
result in the changes in the turbulent source struc-
ture (i.e. increase of the turbulence energy and its
redistribution on the flow scales), which are then re-
flected in the function P, (r, z,w). Therefore, this
mean statistical characteristic of the random signal
recorded from the chest surface can be used to diag-
nose the vessel condition by changes in the structure
of the noise field produced by the flow. This property
of the radial acceleration power spectrum is actually
used by physician in diagnosing patients.

4. NUMERICAL
SION

ANALYSIS AND DISCUS-

In calculating the spectral density (20), the fol-
lowing values of the geometrical and physical pa-

rameters of the model have been used: ap=1 cm,
R=0.2m, H=0.4 m, p=1050 kg/m?, ¢=1500 m/s,
v=4x10"% m?/s, po=300 kg/m?3 ¢o=30 m/s,

U=04+1 m/s, f=w/2n=1 Hz+2 kHz. These
magnitudes agree well with those cited in periodi-
cals [23-25,29,30,36], and are typical for patients.

The  predictions for the mnoise spectra
101g[Py (r, 2, £)/(Pu(f))o] ~ (where  (Py(f))o =
= /p P Pulf)=AnPu(w) (1)), ob-

tained for the turbulent pressure fluctuations mod-
els (9)-(12), are shown in fig. 3. Here the sol-
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(k) |* and wavenumber-frequency spectrum ®,(k,w) with w=const:

a — behaviour of | Sglj)(k) |? and ®,(k,w) with w=const under the integral sign in (21);

b — approximate behaviour of different models for ®,(k,w) with w =const,
1 — the Corcos model; 2 — Ffowecs Williams model; 3 — Smol’yakov — Tkachenko model; 4 — Chase model

id lines correspond to a normal vessel (Req, =
= U(2ap)/v=3500) and dashed lines correspond
to a narrowed vessel (y=0.7, Reyq, =u(27vao)/v =
= Regq, /7=5000).

One can see that the acoustic model predicts that
pipe constriction may be identified by comparison
of the noise fields produced by intact and obstruct-
ed vessels. Since the flow energy in a narrowed
pipe (E~u?) is higher than that in a normal pipe
(Eq~U?), the noise field generated by the more pow-
erful turbulent sources in a partially occluded vessel
is of higher intensity compared to that from the less
powerful sources in a normal vessel. The difference
between the spectral levels of these noise fields is sig-
nificant and, as well as the noise levels themselves,
depends on the turbulence model used.

The physical basis of this dependence is illustrated
in fig. 4. This figure shows the wavenumber depen-
dence of the shape function |5)(L])(/c)|2 and spectrum
&, (k,w) in the modal excitation term (21). In general

case, the main contribution to the spectrum <I>1(,];L) (w)
comes from the main lobe of the oscillating function

|ST(Lj) (k)|? at subconvective wavenumber k :Bﬁlj) < k.
and from the convective peak of the smooth function

O, (k,w) at k=k. (see fig. 4, a), viz.
®F) (@) & (D) (@))subeony + (BF ())cony =

=(f + Pl

subconv ~ conv

k) 2@, (k, w)dk. (22)

As noted in the section 3, the turbulent wall pressure
models by Corcos, Ffowcs Williams, Smol’yakov—
Tkachenko, and Chase approximate the convective

domain of the spectrum ®,(k,w) equally well, but
they differ from each other in the subconvective range
(see fig. 4, b). Consequently, when the total noise field
from turbulence is dominated by the convective wall
pressure components, viz.

(q)z(;]n) (W ) ) subconv <K (q)z(;]n) (W ) ) conv

then all the turbulence models give the same predic-
tions of noise, viz.

(23)

o) (w) & (BF)(w))eony =

= ((@1(7]71)) V)Corcos = ((q)z(;;z))conv)F.W. =
= ((q)](;n)) )Sm —Tk. ((q)z()];z))conv)Chase

However, when the contribution from the subconvec-
tive wall pressure components is either of the same
order of magnitude as that from the convective com-
ponents, viz.

(@) (w))subeony /(BF) (@))cony = O(1),  (24)
or dominates, viz.
(q)1(7]n) (W))subconv > (q)1(7]n) (W))conva (25)

then, due to the different values of the first term on
the right side in (22), the turbulence models (9) - (12)
give different predictions of noise.

Inequality (23) takes place in case of high Mach

number flows (i.e. k /k =U./c<1 or k /k >1)
whereas relatlonshlps (24) and (25) are associ-
ated with low and extremely low Mach number
flows, respectively. Since blood flow in the ves-
sel 1s characterized by extremely low Mach numbers



ISSN 1028-7507 Axycrwanmy BicHuk. 1998.

Tom 1, N 3. C. 3-13

m

T -40r

2> -60

c

o 80¢

o :

@ -100

9 -120

& 140 : ' :

0 500 1000 1500 2000

frequency, Hz

Fig. 5. Spectra of the thorax surface radial acceleration
at point (r=R, z=0) produced by turbulence in a nor-

mal (solid line; Req, =3500) and constricted (dashed line;
v=0.7; S=51%; Reya, =5000) vessels at the flow velocity
U=0.7 m/s, as calculated for the Chase model
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Fig. 6. Spectra of the thorax surface radial acceleration
at point (r=R, z=0) produced by turbulence in a nor-

mal (solid line; Req, =3500) and constricted (dashed line;
v=0.6; S=64%; Reya, =5833) vessels at the flow velocity
U=0.7 m/s, as calculated for the Chase model
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Fig. 7. Spectra of the thorax surface radial acceleration
at point (r=R, z=0) produced by turbulence in a nor-

mal (solid line; Req, =4500) and constricted (dashed line;
v=0.7; S=51%; Reya, =6429) vessels at the flow velocity
U=0.9 m/s, as calculated for the Chase model
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(M =U/e < 1073 for the physiological range of flow
velocities U < 1 m/s), the case (25) takes place in this
study. This explains the differences between the noise
predictions for the various turbulence models.

The most important feature of the data shown
in fig. 3 is that one cannot precisely superpose the
corresponding dashed and solid lines by parallel dis-
placement. This is due to the redistribution of the
turbulence energy on the different flow scales and
production of the new frequency components in the
power spectrum. The redistribution of the turbulence
energy on the flow scales in a narrowed pipe and the
corresponding production of the new frequency com-
ponents in the acceleration power spectrum (20) is
assoclated with the displacement of the convective
peak at k., =w/U, in a normal vessel to kﬁd)
a narrowed vessel.

The other feature of the curves in fig. 3 is connect-

=~2k, in

ed with the existence of the great amount of spec-
tral peaks. The maxima in the spectra are identi-
fied with the acoustic resonances of the chest volume.
These resonances are contained in the denominators
|G(a£1]), r=a, R)|* in expression (20), and their num-
ber 1s determined by the chosen values of the acoustic
model parameters.

As noted in the introduction, the authors of the
acoustic model [25] have used the Corcos cross-
spectrum (7) to describe random pressures at the
vessel surface. The above given comparative anal-
ysis of the noise predictions for the various turbulent
wall pressure models shows that the Corcos spectrum
will overestimate the sound levels in the physiologi-
cal ranges of the flow parameter values. This makes
investigators to be careful in applying this model to
describe turbulent sources in the vessel.

The other models in the section 3 simulate the
structure of the near-wall turbulence in the subcon-
vective region better than the Corcos model. The es-
timates of the acoustic fields obtained for the Chase,
Ffowcs Williams, and Smol’yakov—Tkachenko spec-
tra, and their comparison with the available exper-
imental data show that the Chase model gives the
best predictions for these fields [27]. Tt is therefore
further used in this work for the analysis of the sound
field.

Having given the arguments in favour of the Chase
model, let us consider fig. 5 and 6 which present
the noise spectra (dashed lines) produced by con-
stricted pipes of different diameters (fig. 5: v=0.7,
Re~q, =5000, and fig. 6: y=0.6, Reya, =5833) at the
same flow velocity. These curves demonstrate the in-
fluence of the constriction severity

S =(1—A/Ay) x 100% = (1 — %) x 100%
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on the noise field. Their comparison shows that the
role of this parameter is reflected in the different de-
gree of turbulence of a flow. The higher S (viz. the
smaller 4) the higher the turbulence intensity in the
narrowed pipe, and therefore the higher the gener-
ated noise intensity. This agrees well with the avail-
able experimental data [20, 29, 30] which indicate that
stronger stenosis produces higher noise levels, and
therefore becomes easier to be detected by a physi-
cian.

Although the influence of mean flow velocity, U, on
a noise field generated is qualitatively similar to that
of a constriction severity (i.e., an increase of noise
levels due to an increase of a velocity), medical inter-
pretation of this effect is different. Namely, it 1s well
known in medical practice that a stenosis in a given
patient cannot be detected under resting flow con-
ditions (the patient rests), but it becomes detectable
under elevated flow conditions (manual labour). This
is because the difference between the levels of noise
from diseased and normal vessels increases as the
flow velocity increases. This is demonstrated in fig. b
and 7 in which the noise spectra produced by intact
vessel and the same narrowed vessel at different flow
velocities are shown. The difference is seen to be
rather sensitive to small changes in the mean flow
velocity, U.

CONCLUSIONS

The character of blood flow in a larger vessel and
the properties of blood vessel and surrounding body
tissue are complicated, and the available information
about them 1s restricted and incomplete. The appear-
ance of a vascular stenosis causes significant changes
in the flow structure, such as the appearance of a re-
gion of a fully developed turbulence, increase of the
flow energy, redistribution of the energy on differ-
ent flow scales, etc. These result in the increase of
the acoustic power generated, production of the new
frequency components in the sound field characteris-
tics, etc. In such situation, precise modelling of both
sound generation by a larger blood vessel and trans-
mission of sound through the body tissue for diag-
nostic purposes is difficult, and only the first approxi-
mate steps in adequate describing these processes can
be made. An attempt to do this was undertaken in
this study. The results obtained here are summarized
below.

1. An acoustic model of a larger human blood vessel
has been developed. This model takes into ac-
count the random statistical nature of the noise
sources, the main features of the human chest

structure, and permits estimation of some effects
connected with the presence a stenotic narrow-
ing in the vessel.

2. On the basis of this model, a relationship (20)
has been obtained. It relates the mean statisti-
cal characteristic of the noise field to the vessel
diameter and mean flow velocity. This relation-
ship also reflects the influence of the geometrical
and physical parameters of the human thorax on
the propagation of sound waves from the vessel
to body surface.

3. The model gives the possibility of illustrating the
main features of the mechanism of noise produc-
tion by a vessel constriction. These are the in-
crease of the noise intensity and generation of the
new frequency components in the power spec-
trum. The components are determined by the
mean flow velocity in and the diameter of a con-
striction.
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APPENDIX: NOMENCLATURE

H — height of thorax and length of blood vessel;
R — radius of thorax;

ag — radius of intact blood vessel;

A — minimum cross-sectional area of blood vessel;
A — unobstructed lumen area of blood vessel;

4? — ratio of the minimum cross-sectional area to

the unobstructed lumen area of vessel;

S — severity of stenosis;

p — mass density of normal blood;

po — mass density of the body tissue;

v — kinematic viscosity of normal blood;

¢ — sound speed in normal blood;

cg — sound speed in the body tissue;

U — mean flow velocity in the intact vessel;
U, — convective velocity in the intact vessel,;
u — mean flow velocity in the stenosed vessel;
v, — friction velocitys;

Req, — Reynolds number of mean flow in the intact

vessel;

Re~q, — Reynolds number of a flow in the stenosed

vessel;

Re., — critical Reynolds number;

r, z — radial and axial coordinates, respectively;
t — time;

w — circular frequency;
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| = w/27% — frequency;

k — wavenumber in the flow direction;

ko = w/co — acoustic wavenumber of sound waves
in the body tissue;

kéb) = w/e — acoustic wavenumber of sound waves
in blood,;

o), gy

aﬁf), aﬁf) — radial wavenumbers;

w, — radial acceleration in sound wave;

p: — turbulent wall pressure;

po — acoustic pressure;

— axial wavenumbers;

NAS (2), ol? (z) — acoustic modes of the thorax vol-
ume;

ﬁll), wﬁlz) — cut-off frequencies;
|S( (k)]?, |Snz)(/c)|2 — shape functions;
) 1n (w), ® P )(w) modal excitation terms;
O, (k,w) - Wavenumber frequency spectrum of tur-

bulen wall pressure;

P(w) — power (frequency) spectrum of turbulent
wall pressure;

Py (r, z,w) — spectral density of radial acceleration
in the measurement point (r, z).
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