СИММЕТРИЧНЫЕ КОЛЕБАНИЯ ПОРИСТО-УПРУГОЙ ПОЛОСЫ СО СВОБОДНЫМИ ПОВЕРХНОСТЯМИ ДЛЯ СЛУЧАЯ ЗАКРЫТЫХ ПОР

Н. С. ГОРОДЕЦКАЯ

Институт гидромеханики НАН Украины, Киев

Получено 6.01.98

На основе теории Био изучены дисперсионные характеристики нормальных волн пористо-упругой полосы со свободными поверхностями для случая закрытых пор. Даже без учета диссипативных эффектов полученный дисперсионный спектр значительно сложнее, чем для идеально упругой полосы за счет существования трех видов волн в пористой, насыщенной жидкостью среде. Отличительной особенностью данного спертра является существование бесконечного числа чисто мнимых корней для конкретной частоты, кроме того, в пористо-упругой полосе с закрытыми порами две вещественные ветви проходят через начало координат.

введение

Модель пористо-упругой среды довольно широко используеться для описания динамических процессов в реальных средах. С точки зрения механики сплошной среды – это двухфазная сплошная среда, в которой каждая фаза характеризуется своими параметрами. При этом каждая фаза принимается статистически однородной и изотропной и описывается усредненными по объему характеристиками [1, 2].

Основные уравнения механики многофазных сред строятся на основе физических законов сохранения массы, импульса и энергии [1, 3]. Для применения этих законов при макроскопическом описании двухфазной упругой пористой среды, заполненной вязкой жидкостью, делаются следующие допущения [1, 2, 4–7]:

- В упругом теле размер пор много больше его молекулярно-кинетических размеров, т.е. расстояний между молекулами, размеров кристаллической решетки, средних длин свободного пробега молекул.
- Размер пор намного меньше расстояний, на которых макроскопические или осредненные параметры каждой фазы меняются значительно. Для волновых процессов – это расстояния, на которых существенно меняются кинематические и динамические характеристики движения.
- 3. Фазовые переходы отсутствуют.
- При описании волновых процессов рассматриваются только движения с малыми амплитудами.
- 5. Кинетическая энергия пульсационного движения и пульсационный перенос импульса пре-

небрежимо малы как в твердой фазе, так и в жидкости.

- Вязкость жидкости учитывается только в силе межфазного взаимодействия.
- 7. Теромупругими эффектами пренебрегают.

В рамках указанных допущения, М. А. Био развил теорию распространения волн в упругой пористой среде [4-6]. Впоследствии, сравнивая значения фазовой скорости и затухания волн в пористых средах, полученных по теории Био, с экспериментальными данными, Р. Д. Столл [8, 9] отметил, что коэффициенты в уравнениях состояния и движения должны быть комплексными.

Д. Л. Джонсон и др. [10] показали, что эти коэффициенты выражаются через параметры сред, которые могут быть измерены независимо. Тогда теория Био достаточно хорошо описывает распространение акустических волн в пористой среде.

Большинство работ, выполненных до настоящего времени, в которых изучались вопросы распространения волн в пористо-упругих средах, направлены на изучение и уточнение параметров, характеризующих среду в целом [11, 12]. Значительно меньше работ посвящено решению граничных задач для такого вида сред. В основном рассматривались вопросы отражения и прохождения волн на границе контакта двух полубесконечных сред [7,10,13,14]. Отражение волн от пористоупругого слоя, лежащего на абсолютно жестком основании, рассмотрено в работе [15]. Вопросам прохождения волн через систему пористых слоев посвящена работа [16].

Понимание многих особенностей динамического деформирования пористо-упругих тел может базироваться на анализе дисперсионных характеристик нормальных волн в пористо-упругом слое. К настоящему времени эти свойства не изучались. В данной статье рассматривается процесс распространения волн в пористо-упругом слое со свободными поверхностями для случая закрытых пор (непроницаемый поршень) [2]. Для такого типа граничных условий получено дисперсионное уравнение и рассчитан спектр для случая невязкой жидкости, заполняющей поры. Такое приближение существенно упрощает вычисления, однако позволяет установить основные закономерности распространения нормальных волн в пористоупругом слое и проанализировать взаимовлияние фаз.

1. ХАРАКТЕРИСТИКИ СРЕДЫ

Для описания волновых процессов в пористоупругой среде в рамках теории Био необходимо определить параметры среды. Пористо-упругая среда характеризуется пористостью *m*, проницаемостью K_{pr}, модулем всестороннего сжатия пористой среды K_b , модулем сдвига пористой среды μ , извилистостью α , а также характеристиками упругой и жидкой фаз. В высокочастотной области, где необходимо учитывать характер течения жидкости по порам, добавляются различные структурные коэффициенты, учитывающие форму и размеры пор. Пористость определяется через отношение объема пор, содержащихся в выделенном объеме пористо-упругой среды, к этому объему. K_{pr} характеризует способность упругого скелета пропускать сквозь себя жидкость. Это физическая константа, которая зависит от формы и размеров пор. В механике широко используется соотношение, связывающее проницаемость с эффективным размером D_q зерен упругого скелета [13]:

$$K_{pr} = 0.01 D_{q}^{2}$$

Модуль всестороннего сжатия пористой среды K_b связан с модулем сдвига пористой среды μ и коэф-фициентом Пуассона ν соотношением

$$K_b = \mu \frac{2(1+\nu)}{3(1-2\nu)}.$$

Извилистость учитывает тот факт, что в направлении градиента макроскопического давления движется не вся жидкость, содержащаяся в порах упругого скелета, а только часть ее, так как в реальной среде поры ориентированы в разных направлениях. Извилистость связана с "присоединенной" массой [8].

В свою очередь, упругая среда характеризуется плотностью упругого скелета ρ_s и его модулем все- где стороннего сжатия K_s . Жидкость характеризу-

ется плотностью ρ_f , модулем всестороннего сжатия K_f и кинематической вязкостью ν_f .

Таким образом, в модели пористо-упругой среды присутствуют многие параметры. При введение некоторых из них отсутствуют строгие процедуры по определение их физических и геометрических компонент. Это обеспечивает достаточную гибкость модели для охвата широкого круга явлений, вместе с тем, важной становится задача оценки влияния изменения характеристик среды на изменения свойств волн.

2. ОСНОВНЫЕ УРАВНЕНИЯ

Кратко изложим основные положения теории Био о распространении волн в пористо-упругой среде.

Пусть **u** – вектор смещений упругого скелета, а **v** – вектор смещений жидкости, тогда вектор смещения частиц жидкости относительно твердой фазы задается выражением

$$\mathbf{w} = m(\mathbf{u} - \mathbf{v}),$$

где m – пористость среды; а объем жидкости, которая втекает или вытекает в элемент объема, связанного со скелетом, определяется соотношением

$$\xi = \operatorname{div} \mathbf{w}$$
.

Био сформулировал уравнение состояния в виде

$$\sigma_{ij} = 2\mu e_{ij} + \left[(H - 2\mu)e - C\xi \right] \delta_{ij},$$

$$e = \operatorname{div} \mathbf{u} \ \sigma_{ij} = \tau_{ij} + \sigma \ \delta_{ij}.$$
(1)

Здесь σ_{ij} – тензор напряжений; e_{ij} – тензор деформаций; μ – комплексный модуль упругости; H, C – комплексные коэффициенты; τ_{ij} – тензор напряжений, приложенный к твердому телу; σ – сила, действующая на жидкость, отнесенная к единице поперечного сечения пористой среды, $\sigma = -mp_0$; p_0 – давление в жидкости; δ_{ij} – символ Кронекера. Коэффициенты в уравнении состояния пори-

стой среды определяются следующим образом [8]:

$$H = \frac{(K_s - K_b)^2}{D - K_b} + K_b + 4\mu/3,$$

$$C = \frac{K_s(K_s - K_b)}{D - K_b},$$
(2)

$$M = \frac{K_s^2}{D - K_b},$$

$$D = K_s [1 + m(K_s / K_f - 1)]$$

Получив уравнение состояния и определив значения соответствующих коэффициентов, можно сформулировать уравнения движения в смещениях для упругой и жидкой фаз с учетом их взаимодействия [13]:

$$\mu \Delta \mathbf{u} + (H - \mu) \text{ grad div } \mathbf{u} - C \text{ grad div } \mathbf{w} =$$
$$= \rho \partial_t^2 \mathbf{u} - \rho_t \partial_t^2 \mathbf{w},$$

C grad div $\mathbf{u} - M$ grad div $\mathbf{w} =$

$$= \rho_f \partial_t^2 \mathbf{u} - \frac{\alpha \rho_f}{m} \partial_t^2 \mathbf{w} - F \ \partial_t \mathbf{w},$$

где *М* – комплексный коэффициент, определенный выше; *р* – средняя плотность, связанная с плотностями упругого скелета и жидкости соотношением

$$\rho = (1-m)\rho_s + m\rho_f.$$

Извилистость α для реальной среды определяется экспериментально [11]. Посредством величины α определяется коэффициент динамической связи упругого скелета и жидкости $\rho_{12} < 0$ [5]:

$$\rho_{12} = (1 - \alpha) \rho_f \, m.$$

Величина $F = f(\omega) (\rho_f \nu_f) / K_{pr}$ в выражении (3) – частотно зависимая функция, определяемая характером движения жидкости по порам упругого скелета.

В водонасыщенной пористой среде с линейно упругим скелетом при постоянном отношении расхода жидкости к градиенту давления (течение Пуазейля), частотную зависимость вязкого сопротивления потоку жидкости можно не учитывать и считать $f(\omega) \approx 1$ вплоть до частот, при которых вязкие и инерционные силы имеют одинаковый порядок [4, 8, 10].

3. РАСПРОСТРАНЕНИЕ ГАРМОНИЧЕС-КИХ ВОЛН

По аналогии с однофазной средой разложим вектор смещения в жидкости и в упругом скелете на скалярный и векторный потенциалы:

$$\mathbf{u} = \nabla \phi_s - \operatorname{rot} \, \boldsymbol{\psi}_s, \quad \operatorname{div} \, \boldsymbol{\psi}_s = 0, \tag{4}$$

$$\mathbf{v} = \nabla \phi_f - \operatorname{rot} \boldsymbol{\psi}_f, \quad \operatorname{div} \boldsymbol{\psi}_f = 0. \tag{5}$$

Подставляя выражения (4), (5) в систему уравнений (3) и учитывая соотношения

div
$$\nabla = \Delta$$
, rot $\nabla = 0$, div rot $= 0$,

после поочередного отделения вихревых и потенциальных составляющих получаем

$$\phi_s = \phi_0 + \phi_1,$$

где функции ϕ_j определяются как решения уравнений Гельмгольца

$$\Delta \phi_j + k_j^2 \phi_j = 0, \quad k_j^2 = \frac{\omega^2}{c^2} s_j, \quad j = 0, \ 1.$$
 (6)

Здесь s_j – корень квадратного уравнения

$$_{1}s_{j}^{2} - B_{1}s_{j} + C_{1} = 0, \quad j = 0, 1$$
 (7)

с коэффициентами

(3)

A

$$A_{1} = q_{22}q_{11} - q_{12}^{2},$$

$$B_{1} = q_{11}\Gamma_{22} + q_{22}\Gamma_{11} - 2q_{12}\Gamma_{12} + i\Gamma,$$

$$C_{1} = \Gamma_{11}\Gamma_{22} - \Gamma_{12}^{2} + i\Gamma,$$

где введены обозначения

$$q_{11} = \frac{H - 2Cm + Mm^2}{H}, \quad q_{12} = \frac{Cm - Mm^2}{H}$$
$$q_{22} = \frac{Mm^2}{H}, \quad c^2 = \frac{H}{\rho},$$
$$\rho_{11} = (1 - m)\rho_s - \rho_{12}, \quad \rho_{22} = m\rho_f - \rho_{12},$$
$$\Gamma_{ij} = \frac{\rho_{ij}}{\rho}, \quad \Gamma = \frac{m^2 \rho_f \nu_f}{K_{pr} \rho \omega}.$$

Для потенциала ϕ_f через функции ϕ_0 , ϕ_1 имеем уравнение

$$\phi_f = M_0 \phi_0 + M_1 \phi_1,$$

с коэффициентами

$$M_{j} = \frac{\Gamma_{11}q_{22} - \Gamma_{12}q_{12} - A_{1}s_{j} + (q_{22} + q_{12})i\Gamma}{\Gamma_{22}q_{12} - \Gamma_{12}q_{22} + (q_{22} + q_{12})i\Gamma}, \qquad (8)$$
$$j = 0, 1.$$

Для функции ψ_s получаем уравнение Гельмгольца

$$\Delta \psi_s + k_2^2 \psi_s = 0,$$

$$k_2^2 = \frac{\omega^2 \rho}{\mu} \left[\Gamma_{11} + M_2 \Gamma_{12} + (1 - M_2) i \Gamma \right]$$
⁽⁹⁾

и соотношения

$$\psi_f = M_2 \psi_s, \quad M_2 = \frac{-\Gamma_{12} + i\Gamma}{\Gamma_{22} + i\Gamma}.$$
 (10)

Выражения (6), (9) показывают, что в упругой пористой среде, заполненной вязкой жидкостью, может распространяться три типа волн: продольные волны первого и второго типа (ϕ_0 , ϕ_1) и поперечная волна (ψ). Постоянные распространения этих волн, в случае учета вязкости, зависят как от характеристик среды, так и от частоты колебаний ω , т.е. волны в упругой пористой среде, насыщенной вязкой жидкостью, обладают дисперсией. Существование трех типов волн в пористой среде было предсказано в работах [4, 5] и подтверждено экспериментально [17]. Если эффектами вязкости пренебречь ($\nu_f = 0$), то все три волны будут незатухающие и бездисперсионные [10, 13].

4. ГРАНИЧНЫЕ УСЛОВИЯ

Для полной постановки задачи механики пористо-упругой, насыщенной жидкостью среды волновые уравнения необходимо дополнить граничными условиями. В случае свободной поверхности в пористо-упругой среде граничные условия могут быть двух видов: с открытыми и закрытыми порами. В данной работе рассматривается случай с закрытыми порами (непроницаемый поршень) [2].

В работе рассматриваются свойства нормальных волн в пористо-упругом слое толщиной $(-\infty < X < \infty, -h \le Z \le h)$ со свободными поверхностями $Z = \pm h$ в случае закрытых пор. В этом случае граничная задача для вектора смещений упругого скелета **u** и вектора смещений жидкости **v**, удовлетворяющих уравнениям движения (3) в безразмерных переменных x = X/h, z = Z/h, имеет вид

$$\sigma_{zz}(x, \pm 1) = 0, \quad \tau_{xz}(x, \pm 1) = 0,$$

$$u_z(x, \pm 1) = v_z(x, \pm 1).$$
 (11)

Здесь первое условие означает отсутствие полных нормальных напряжений, приложенных к жидкой и к упругой фазам. Второе условие – отсутствие касательных напряжений, приложенных к упругой фазе. Третье условие – неперетекание жидкости на границе.

5. ДИСПЕРСИОННЫЕ СООТНОШЕНИЯ

Представление для скалярных и векторного потенциалов для случая гармонических колебаний ищем в виде [18]:

$$\phi_j = (A_j \cos \alpha_j z + B_j \sin \alpha_j z) e^{-i\xi x},$$

$$\phi_j = (E \cos \alpha_2 z + F \sin \alpha_2 z) e^{-i\xi x}.$$

$$j = 0, 1. \quad (12)$$

Временной множитель $e^{-i\omega t}$ в дальнейшем опускается. Здесь ξ – постоянная распространения,

$$\alpha_j = \sqrt{(k'_j)^2 - \xi^2}, \quad j = 0, 1, 2$$

 $k'_{j} = k_{j}h, j = 0, 1, 2$ – нормированные частоты. Подставляя (12) в граничные условия (11) с учетом (1) и выражений (4), (5), получаем дисперсионное уравнение в виде:

$$\Delta = \Delta_1 \, \Delta_2 = 0. \tag{13}$$

Следовательно, полная система нормальных волн в пористо-упругом слое со свободными поверхностями для случая закрытых пор распадается на два класса, отвечающих обращению в нуль каждого из сомножителей дисперсионного уравнения (13) по отдельности:

$$\Delta_{1} = \alpha_{0}m_{0}\sin\alpha_{0} \times \times (\tau_{1}\beta\sin\alpha_{2}\cos\alpha_{1} + \xi^{2}\alpha_{1}\alpha_{2}\cos\alpha_{2}\sin\alpha_{1}) - \alpha_{0}\xi^{2}\sin\alpha_{0} \times (m_{1}\alpha_{1}\alpha_{2}\cos\alpha_{2}\sin\alpha_{1} - m_{2}\tau_{1}\sin\alpha_{2}\cos\alpha_{1}) - \tau_{0}\alpha_{1}\cos\alpha_{0}\sin\alpha_{1}\sin\alpha_{2}(m_{2}\xi^{2} + m_{1}\beta), \qquad (14)$$

$$\Delta_{2} = \alpha_{0}m_{0}\cos\alpha_{0} \times \times (\tau_{1}\beta\cos\alpha_{2}\sin\alpha_{1} + \xi^{2}\alpha_{1}\alpha_{2}\sin\alpha_{2}\cos\alpha_{1}) - -\alpha_{0}\xi^{2}\cos\alpha_{0} \times (15) \times (m_{1}\alpha_{1}\alpha_{2}\sin\alpha_{2}\cos\alpha_{1} - m_{2}\tau_{1}\cos\alpha_{2}\sin\alpha_{1}) - -\tau_{0}\alpha_{1}\sin\alpha_{0}\cos\alpha_{2}\cos\alpha_{1}(m_{2}\xi^{2} + m_{1}\beta).$$

Здесь введены обозначения

, 2,

$$\iota_i = \frac{2\mu}{2\mu},$$
равнение (14) соответствует симметричне

Уравнение (14) соответствует симметричным нормальным волнам ($B_0 = 0, B_1 = 0, E = 0$):

$$u_z(-z) = -u_z(z), \quad u_x(-z) = u_x(z),$$

 $v_z(-z) = -v_z(z), \quad v_x(-z) = v_x(z).$

Смещения в этом случае записываются в виде

$$u_{z} = -m_{12} \frac{\sin \alpha_{0} z}{\sin \alpha_{0}} + + m_{02} \frac{\sin \alpha_{1} z}{\sin \alpha_{1}} + m_{01} \frac{\xi^{2}}{\beta} \frac{\sin \alpha_{2} z}{\sin \alpha_{2}}, u_{x} = i\xi \left(-m_{12} \frac{\cos \alpha_{0} z}{\alpha_{0} \sin \alpha_{0}} + + m_{02} \frac{\cos \alpha_{1} z}{\alpha_{1} \sin \alpha_{1}} - m_{01} \frac{\alpha_{2}}{\beta} \frac{\cos \alpha_{2} z}{\sin \alpha_{2}} \right),$$
(16)
$$v_{z} = -M_{0} m_{12} \frac{\sin \alpha_{0} z}{\sin \alpha_{0}} + + M_{1} m_{02} \frac{\sin \alpha_{1} z}{\sin \alpha_{1}} + M_{2} m_{0} 1 \frac{\xi^{2}}{\beta} \frac{\sin \alpha_{2} z}{\sin \alpha_{2}},$$
$$v_{x} = i\xi \left(-M_{0} m_{12} \frac{\cos \alpha_{0} z}{\alpha_{0} \sin \alpha_{0}} + + M_{1} m_{02} \frac{\cos \alpha_{1} z}{\alpha_{0} \sin \alpha_{1}} - M_{2} m_{01} \frac{\alpha_{2}}{\beta} \frac{\cos \alpha_{2} z}{\sin \alpha_{2}} \right),$$

гле

$$m_{01} = m_0 - m_1,$$

 $m_{j2} = m_j + m_2 \frac{\xi^2}{\beta}, \ j = 0, 1.$

Уравнение (15) соответствует антисимметричным нормальным волнам ($A_0 = 0, A_1 = 0, F = 0$). Тогда смещения антисимметричны относительно плоскости z = 0:

$$egin{aligned} &u_z(-z) = u_z(z)\,, &u_x(-z) = -u_x(z)\,, \ &v_z(-z) = v_z(z)\,, &v_x(-z) = -v_x(z)\,. \end{aligned}$$

В данной работе рассматриваются только симметричные колебания, соответствующие уравнению $\Delta_1 = 0$.

Дисперсионное соотношение связывает постоянную распространения ξ с безразмерной частотой $\Omega = k'_2$. Частоты k'_0 , k'_1 выражаются через k'_2 при помощи соотношений (6) – (9).

В дальнейшем рассматривается частный случай стационарного течения невязкой жидкости ($\nu_f = 0$), к тому же пренебрегаем диссипацией в упругом скелете.

Если вязкость жидкости не учитывать $\nu_f = 0$, то коэффициенты дисперсионного уравнения будут или действительными, или чисто мнимыми, диссипация энергии в такой среде отсутствует.

Несмотря на такое существенное упрощение, модель все же оставляет возможность определить некоторые важные особенности волновых процессов в пористо-упругих средах, отражающих взаимодействие фаз.

Полученное уравнение переходит в дисперсионное уравнение Релея – Лемба при $m_1 = 0$, $m_2 = 0$, $(1 + t_1)(k'_1)^2 = (k'_2)^2/2$ с множителем, зависящим от k'_0 .

При непрерывном изменении частоты точка (Ω, ξ) описывает бесконечную совокупность дисперсионных кривых, для которых имеется однозначная зависимость $(\Omega = K(\xi))$. Дисперсионная ветвь должна быть непрерывной и прослеживаться от начала на плоскости $\Omega = 0$ до ∞ . В общем случае каждая дисперсионная ветвь имеет вещественный, чисто мнимый и комплексный участок. Комплексные участки ветви входят и выходят на мнимую или действительную плоскость ξ в точках относительного экстремума под углом 90°. Эти общие свойства дисперсионных ветвей использовались при построении дисперсионного спектра.

Для фактического определения вещественных корней прежде всего следует найти частоты запирания. Полагая $\xi = 0$ в уравнении (14), получаем

$$\Delta = \sin k_2' (m_0 (1+t_1) k_1' \sin k_0' \cos k_1' - -m_1 (1+t_0) k_0' \sin k_1' \cos k_0') = 0,$$
(17)

откуда находим два набора частот запирания:

$$\sin k_2' = 0, \quad k_2' = n\pi, \quad n = 0, 1, 2, \dots,$$
 (18)

$$(m_0(1+t_1)k'_1\sin k'_0\cos k'_1 - m_1(1+t_0)k'_0\sin k'_1\cos k'_0) = 0.$$
(19)

Для определения частот запирания второго типа необходимо решить трансцендентное уравнение.

Коэффициенты этого уравнения зависят от большого числа параметров. Значения частот запирания найдено для конкретной среды [10] с характеристиками m = 0.3, $\mu = 5 \cdot 10^7$ (Pa), $\alpha = 1.25$, $\rho_s = 2650 \text{ кг/m}^3$, $K_s = 3.6 \cdot 10^{10}$ (Pa), $\rho_f = 1000 \text{ кг/m}^3$, $K_f = 2.9 \cdot 10^9$ (Pa), $\nu = 0.3$, $\nu_f = 0$.

В этом случае первые значения частоты запирания второго типа: $k'_2 = 3.893$, $k'_2 = 7.784$, $k'_2 = 11.67$, $k'_2 = 15.55$. Зная частоты запирания несложно численно определить вещественные корни дисперсионного уравнения (14).

Для анализа комплексных корней необходимо найти точки их выхода на плоскость $\Omega = 0$, которые определяются из уравнения

$$\xi^{3} \sinh \xi \left(a\xi + b \sinh 2\xi \right) = 0,$$

$$a = m_{0} \left(\delta_{2} - 1 \right) + \left(m_{1} - m_{2} \right) \delta_{0} - m_{1} \delta_{2} + m_{2}, \quad (20)$$

$$b = \left(m_{0} - m_{2} \right) \left(0.5 + t_{1} \right) - \left(m_{1} - m_{2} \right) \left(0.5 + t_{0} \right) \delta_{0},$$

где

$$\delta_2 = \frac{(\Gamma_{11} + M_2 \Gamma_{12})H}{\mu s_1}, \quad \delta_0 = \frac{s_0}{s_1}.$$

Имеются два типа таких точек:

$$\sinh \xi = 0, \quad \xi = in\pi, \quad n = 1, 2, \dots;$$
 (21)

$$a\xi + b \sinh 2\xi = 0, \quad \xi \approx i \frac{4n-1}{4}\pi \mp \frac{\ln(2\pi na/b)}{2}.$$
 (22)

Для второго уравнения приведено асимптотическое значение корней для больших номеров.

При вычислении комплексных корней уравнения (14) применялся метод Ньютона [19]. В качестве начальных приближений принимали значения корней (21) и (22). Счет выполнялся для каждой дисперсионной кривой. Мнимые и действительные корни находились методом половинного деления.

На рис. 1 показаны мнимые и действительные участки дисперсионных кривых. Номер кривой соответствует номеру диспресионной ветви. Точки 1' и 2' соответствуют точкам выхода первого и второго комплексного корня на мнимую плоскость ξ – это точки относительного минимума мнимого участка дисперсионной ветви. Из точки 3' (относительного максимума) выходит комплексная ветвь, вырождающаяся в чисто мнимую в точке 4'. Этот участок дисперсионной ветви позволяет соединить действительный и чисто мнимый участки ветви (обозначенной цифрами 5-6)

Рис. 1. Дисперсионный спектр пористо-упругого слоя со свободными поверхностями для случая закрытых пор (вещественные и мнимые ветви)

Табл. 1.

Частота k_2'	$\mathbf{Im}\xi$	${ m Re}\xi$	Частота k_2'	$\operatorname{Im} \xi$	${f Re}\xi$
5.758	1.865	0.2565	6.201	1.093	0.3018
5.854	1.728	0.3785	6.213	1.056	0.2607
5.953	1.579	0.4370	6.228	1.005	0.1801
6.002	1.500	0.4487	6.238	0.971	0.0802
6.101	1.323	0.4321	6.241	1.016	0.0

Ta	бл	2	

Частота k'_2	$\mathbf{Im}\xi_1$	${f Re} \xi_1$	$\mathbf{Im}\xi_2$	${f Re}\xi_2$
0.366	2.085	1.126	5.349	1.552
0.614	2.045	1.125	5.335	1.553
0.985	1.948	1.120	5.303	1.554
1.233	1.856	1.107	5.272	1.554
1.852	1.546	0.999	5.164	1.553
2.223	1.348	0.859	5.077	1.547
2.594	1.159	0.694	4.973	1.536
2.842	0.997	0.555	4.893	1.524
2.966	0.881	0.449	4.850	1.516
3.213	0.978	0.0	4.756	1.496

с плоскостью $\Omega = 0$. Значения данного комплексного корня приведено в табл. 1. Значения первых комплексных корней приведено в табл. 2.

Как и дисперсионные уравнения для идеально упругого слоя со свободными границами и жидкого слоя с абсолютно жесткими стенками данное уравнение имеет конечное число вещественных $\xi = \pm \zeta$ корней для конкретного значения частоты Ω. Характерной особенностью полученного спектра является существование двух вещественных ветвей, начинающихся с нулевой частоты. Для однофазной среды ни для упругого, ни для жидкого слоя такое явление не наблюдалось, независимо от вида граничных условий и типа симметрии.

Сравнивая дисперсионные кривые со спектром уравнения Рэлея – Лэмба [18] для симметрично деформированного слоя, следует отметить еще ряд принципиальных отличий. В пористо-упругом слое существуют два типа бесконечных наборов нормальных волн для конкретной частоты – нормальные волны с чисто мнимой постоянной распространения, как для жидкого слоя, и моды с комплексной постоянной распространения, как для идеально упругого слоя. Моды с комплексными постоянными распространения образуют стоящую волну, при этом смещения должны затухать с расстоянием, т.е. при $x > 0, \xi = \pm \zeta + i\eta$. Комплексные ветви первых номеров вырождаются в чисто мнимые ветви. В рассмотренном частотном диапазоне не существует вещественных участков ветви с одинаковыми и различными знаками фазовой и групповой скоростей, т.е. явления "обратной" волны обнаружено не было.

Общими чертами дисперсионных спектров для пористо-упругой и идеально упругой сред при заданных граничных условиях являются:

- Наличие бесконечного числа комплексных корней дисперсионного уравнения, которые начинаются на плоскости Ω = 0. Комплексные ветви пересекают мнимые участки в точках относительного экстремума и в такую точку входит по два комплексных участка.
- 2. Частоты запирания соответствуют волнам двух типов. Частотный интервал для соседних величин частот запирания различных семейств служит основой для петли в области чисто мнимых значений §. Изменяя характеристики среды, возможно существенно перестроить спектр за счет изменения взаимного расположения частот запирания волн различных семейств. Частоты запирания первого семейства, связанные с поперечными волнами, зависят от меньшего числа параметров среды. Обозначим их через k_j^m . Индекс ј соответствует номеру частоты запирания. Для пористо-упругого слоя эти частоты не зависят от пористости и коэффициентов H, C, *М*, для упругой среды – от *ν*. Частоты запирания второго семейства обозначим через k_i^n .
- 3. Коэффициент Пуассона является одним из наиболее значимых параметров. На рис. 2 показано изменение структуры спектра для коэффициентов Пуассона $\nu = 0.08$ (кривые 1 и 1-1) и $\nu = 0.2$ (кривые 2 и 2-1). Для $\nu < 0.11 \ k_1^m$ становится меньше чем $k_1^n = \pi$. Ветвь, связанная с комплексным корнем первого семейства $(\xi = i\pi)$, вырождается в действительную на частоте запирания k_1^m (для $\nu = 0.08, k_1^m = 3.08$) и по форме повторяет первую дисперсионную кривую для жидкого слоя. Петля в области чисто мнимых значений ξ образуется между k_2^m и k_1^n . В точку относительного минимума на этой петли вырождается первый комплексный корень, связанный со вторым семейством (уравнения (22)). Для $0.11 < \nu < 0.44, k_2^n >$ $>k_1^m>k_2^n$ петля образуется между k_1^n и k_1^m и с увеличение коэффициента Пуассона растет в размерах. При этом ветвь, связанная с комплексным корнем первого семейства (уравнение(21)) на частотах выше k_1^n , отклоняется от оси k' и с ростом ν значительно меняет свою форму. Для $\nu > 0.44, k_1^m > k_2^n$ петля

Рис. 2. Изменение структуры дисперсионного спектра для чисто мнимых ветвей при росте коэффициента Пуассона

образуется между этими частотами. Мнимая ветвь, связанная с k_1^n , не образует петли, а становится уходящей. В спектре для идеально упругого слоя со свободными поверхностями наблюдается аналогичное поведение в области чисто мнимых значений ξ для петли, связанной с четвертой и пятой нормальными волнами [18]. Изменение пористости также существенно влияет на частоты запирания. Для сред с пористостью меньшей 0.2 справедливо $k_1^m < k_1^n$. Наблюдается перестройка спектра. Изменение извилистости оказывает влияние только на величину критической частоты, не приводя к изменению структуры спектра. Варьирование других параметров не приводит к значительным изменениям.

4. Существуют комплексные участки ветви, начинающиеся не на плоскости k₂' = 0, а в точке относительно экстремума (максимума) мнимой ветви, которые соединяют мнимую петлю, обеспечивая непрерывность ветви от нулевой до бесконечной частоты. Имеется в виду комплексный участок, соединяющий точки 3' и 4' на рис. 1. Сравнивая полученный спектр с дисперсионными ветвями жидкого слоя, отметим, что общим является только наличие бесконечного числа чисто мнимых корней для любой частоты. Форма дисперсионных ветвей и частоты запирания существенно отличаются.

выводы

Построен дисперсионный спектр для пористоупругого слоя со свободными поверхностями в случае закрытых пор (непроницаемый поршень) при отсутствии вязкости. При таком типе граничных условий смещения и напряжения в жидкой и упругой фазах связаны не только через уравнения движения, но и посредством граничных условий. Это приводит к тому, что частоты запирания, связанные с продольными волнам, зависят от фазовых скоростей продольных волн первого и второго типов в безграничной пористо-упругой среде.

Полученный дисперсионный спектр обладает рядом особенностей, характерных как для спектра идеально упругого слоя со свободными границами, так и для жидкого слоя. Отличительными характеристиками данного дисперсионного спектра является существование для конечной частоты бесконечного числа корней двух типов – комплексных и чисто мнимых. Для идеально упругого слоя со свободными поверхностями для конкретной частоты существует конечное число чисто мнимых корней, а для жидкого слоя комплексных корней не существует.

Отличительной особенностью полученного спектра является существование двух действительных ветвей, начинающихся с нулевой частоты.

- 1. *Нигматулин Р. И.* Основы механики гетерогенных сред.- М.: Наука, 1978.- 336 с.
- 2. Механика насыщенных пористых сред / Николаевский В. Н. и др.- М.: Недра, 1970.- 336 с.
- 3. Нигматулин Р. И. Методы механики сплошной среды для описания многофазных смесей // Прикл. математика и механика.- 1970.- **34**.-С. 1097-1112.
- Biot M. A. Theory of propagation of elastic waves in fluid-saturated porous solid // J. Acoust. Soc. Amer.-1956.- 28, N 2.- P. 168-191.

- Био М. А. Механика деформирования и распространения акустических волн в пористой среде // Механика. Период. сб. переводов иностр. статей.-1963.-6, N 82.- С. 103-134.
- Био М. А. Обобщенная теория распространения акустических волн в диссипативных пористых средах // Механика. Период. сб. переводов иностр. статей.- 1963.- 6, N 82.- С. 135-155.
- Сеймов В. М., Трофимчук А. Н., Савицкий О. А. Колебания волны в слоистых средах.-К.: Наук. думка, 1990.- 222 с.
- 8. Столл Р. Д. Акустические волны в водонасыщенных осадках // Акустика морских осадков. - М., 1977. - С. 28-46.
- Stoll R. D., Bryan G. M. Wave attenuation in saturated sediments // J. Acoust. Soc. Amer.- 1970.- 47, N 5, Pt. 2.- P. 1440-1447.
- Albert G. D. A comparison between wave propagation in water-saturated and air-saturated porous materials // J. Appl. Phys. - 1993. - 73, N 1. - P. 28-36.
- Courtney R. C. Acoustical properties of fine grained sediments from Emerald Basin: Toward an inversion for physical properties using the Biot-Stoll model // J. Acoust. Soc. Amer. - 1993. - 93, N 6. - P. 3193-3201.
- Lemarinier P., Henry M., Allard J.-F., Bonardet J. L., Gedeon A. Connection between the dynamic bulk modulus of air in a porous medium and the specific surface // J. Acoust. Soc. Amer.- 1995.- 97, N 6.-P. 3478-3282.
- Yamamoto T. Acoustic propogation in the ocean with a poro-elastic bottom // J. Acoust. Soc. Amer.-1983.- 73, N 5.- P. 1578-1596.
- Косачевский Л. Я. Об отражении звуковых волн от слоистых двухкомпонентных сред // Прикл. математика и механика. – 1961. – 25. – С. 1077–1082.
- Allard J.-F. Sound field of a baffled piston source covered by a porous medium layer // J. Acoust. Soc. Amer.- 1995.- 98, N 3.- P. 1747-1766.
- Sun F.,Banks-Lee P., Peng H. Wave propagation in anisotropic periodically layered fluid-saturated porous media // J. Acoust. Soc. Amer.- 1993.- 93, N 3.- P. 1277-1285.
- Plona T. J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies // Appl. Phys. Let. 1980.- 36.- P. 259-261.
- Гринченко В. Т., Мелешко В. В. Гармонические колебания и волны в упругих телах. – К.: Наук. думка, 1981. – 284 с.
- 19. Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными.– М.: Мир, 1975.– 559 с.