I.G.Nesteruk
Maximization of range supercavitation motion on inertia with a fixed starting depth

Applied hydromechanics, Vol. 10 (82) ¹ 3, (2008) p.51-64
Maximum range problems are considered for the supercavitating motion of the axisymmetric body on inertia under an arbitrary angle to horizon. The starting velocity and depth are accepted as fixed. Two groups of isoperimetric conditions were used: with the constant body mass and with the constant average body density. Simple analitic relations for the optimal body shapes and the cavitator radius were obtained for the cases of the fixed length, caliber and volume of the body. The maximum possible values of the range are calculated. For the upward supercavitating motion, it was shown that infinite small exceeding of some critical value of the starding velocity can cause a jump of the range and coming to the water surface. The corresponding values of the critical Froude number are calculated. The peculiarities of the optimization problems in the cases of the slender cavitators and the entrance into the water from atmosphere are analysed. The maximum range of axisymmetric bodies, which provide the flow pattern without boundary layer separation and cavitation, is estimated. It is shown that at high Reynolds numbers these bodies can be preferable in comparison with the supercavitating ones. Analitical formulas for the maximum range of the steady supercavitating movement.
KEY WORDS:
***
TEXT LANGUAGE: Ukrainian